

Influence of silicone elastomer recyclate on the processing with silicone rubber and resulting mechanical properties

Polymer Application Center

<u>Timo Hofmann</u>, R.-U. Giesen, H.-P. Heim HCR Excellence 2024 16.04.2024 - Burghausen

Short introduction Unipace

- •• Founded in 2013 as Polymer Application Centre by
- •• Integrated in the subject area of plastics technology (Prof. Heim)
- O Ink between university and industry
- Research & development in the field of silicone processing
- Selection of research areas

Thermoplastic – LSR Injection moulding

B BRA

Compounding and extrusion of high consistency silicone rubber (HCR)

Materials testing of elastomers

Currently 9 employees (4 scientific, 2 technical, 3 student assistants)

○●● Turnover approx. 1.1 million € (public funding/industry 60%/ 40%)

Why recycling?

- •• Increasing regulation from the European Union
 - EU Packaging Directive 55 percent of plastic packaging must be recycled from 2030
 - EU Single-Use Plastics Directive some single-use products have been banned in the EU since 2021
 - Action plan for the circular economy for electronics, batteries, vehicles, plastics, textiles....
- •• Specification by end customer/government order
 - Increasing environmental awareness among end customers
 - Recycling necessary to fulfill the CO² balance

•• Until now no industrial use of the recycling processes

Possibilities of recycling I

- •• Mechanical recycling of rubber
 - •• Grinding of the waste (crygonic, wet)
 - • Producesses filler material

Step I

•• Chemical recycling of rubber

- Devulcanisation of the crosslinked rubber
- Generally combined with thermal or mechanical energy to speed up the process
- Using chemical agents that breaks the carbon- sulfur or sulfur- sulfur bonds

•• Some more ultrasonic, ultrawave method....

[1]

Possibilities of recycling II

- Mechanical recycling of silicone rubber
 - •• Crushing and grinding the vulcanized rubber
- •• Previous findings from research
 - •• Adding the recyclate increases the viscosity
 - The addition of recyclat changes the cross-linking speed
 - •• Change in the surface morphology of extruded profiles

Possibilities of recycling III

- Subdivision of chemical recycling into 4 areas
 - • Catalytic controlled depolymerization by strong acids or bases
 - • Use of nucleophiles or electrophiles with catalysts
 - Thermal depolymerization
 - • Radicals cause cleavage and calcination

Thermo Oxidative degradation 250 °C - Over 500 °C

- Current fields of reasearch
 - Recycling with tetramethylammoniumhydroxid (Japan) [4]
 - Fluoride-Catalyzed Depolymerization (USA) [5]

Current issues in the context of recycling

- •• How do the decomposition products of chemical blowing agents behave when using the recyclate is used
 - Very important for the use of addition curing systems (interesseting point for chemical and mechanical recycling)
- ••• What influence has the recycling content on the mechanical properties of our endproduct
 - High impact of the used recyclat (Shore Hardness and fillers, particle size, post curing)
- •• What filler contents can be processed with the usual processing methods?
 - •• Limitation of the component thickness by the recyclat size with extrusions tools
 - • Does the sprue have to be adjusted for injection molds due to the recyclate?

How would a cycle economy look like in this field?

Focus at mechanical recycling at UNIpace I

- Procedure of the mechanical recycling: crushing and grinding of silicone elastomers with an external service provider
- •• Achieving very small grain sizes

Focus at mechanical recycling at UNIpace II

- ••• Cutting mill at Unipace
 - Goliath Plus from Digicolor
 - Sizes from 4 mm to approx. 0.5 mm depending on the sieve used

- •• Industrial grinding with a mill
 - •• Use of disk mills or turntable mills
 - Use of different screening systems to achieve the desired quality

Source: Pallmann

Processing & testing of the HCR with recyclat content

Compounding

Mixing of HCR 401-40 with 1,5 phr Crosslinker and recyclat content

Processing Extrusion

Temperature IRUnit : 500 & 600°C Speed of the screw: 10 & 15 [u/min]

Processing: 170°C for 10 min Tempering: 200°C for 4h Analysing & testing

Tensile test

Used materials for extrusion

- ••• Base rubber was a Wacker 401-40 S
 - Good flexibility, high transparence and mechanical properties
- •• Crosslinker Pergan Peroxan PMB Paste 50 SI
 - • Di-(4-methylbenzoyl)-peroxide
 - Peroxide content approx. 50%
 - •• Crosslinking temperature (t90): 110°C

Used compounds for the extrusion

Base rubber	Amount of crosslinker [phr]	Recyclat content [phr]
401-40	1,5	0
401-40	1,5	10
401-40	1,5	30
401-40	1,5	50

Structural formula of Di-(4-methylbenzoyl)-peroxide

Source: Pergan

Used materials for press

- ••• Base rubber was a Wacker 401-40 S
 - Good flexibility, high transparence and mechanical properties
- ••• Crosslinker Pergan Peroxan BD Paste 50 SI
 - Di-(2,4-dichlorobenzoyl)-peroxides
 - Peroxide content approx. 50%
 - Crosslinking temperature (t90): 90°C

Used compounds for the press

Base rubber	Amount of crosslinker [phr]	Recyclat content [phr]
401-40	1,5	0
401-40	1,5	10
401-40	1,5	20
401-40	1,5	30

Structural formula of Di-(2,4-dichlorobenzoyl)-peroxide

Influence of the recyclat content by the extrusion of HCR

- •• Extrusion at two speeds and temperatures with different recyclate contents
- •• Significant influence of the recyclat content on the melt pressure in the extruder
- •• Increase of the extrudat diameter with rising recyclat content

Influence of the recyclat content on testet pressed plates I

Tensile test $\bigcirc \bigcirc \bigcirc \bigcirc$

- ••• a decrease in the maximum force with increasing recyclate content can be seen in the tension
- •• Low influence of the recyclate on the elongation at break independent of the recyclate content

Influence of the recyclat content on testet pressed plates II

•• Shore hardness

0

- Initially, an increase in the measured value scatter and a reduction in the hardness due to the filler material can be observed
- If the recyclate content is increased from 20 to 30 phr, the influence of the recyclate composition increases noticeably

Influence of the recyclat content on testet pressed plates III

•• Compression set

- increase in scattering from a recyclate content of 20 phr
- slight deterioration in compression set with increasing recyclate content from 20 phr

Short excursion on LSR injection molding

- Previous tests with a Arburg 270S and tension test tool have yielded the following results:
 - Increase of the injection pressure with rising recyclat content
 - sprayability of tensile rods with a 0.8 nozzle up to 15 phr recyclat content
 - With increasing recyclat content we see a decrease of the crosslinking because of the higher content of catalyst poisens

Summary

- Recycling of silicone rubbers is possible using various processes, although no industrial processes are yet available
- The use of mechanical recycling allows the use of recyclate powder in small quantities (up to 20 phr) when using peroxide, depending on the subsequent application
- When using addition crosslinkers, it must be ensured that, if possible, no catalyst poisons are present in the recyclate.
- •• Most important: Building a circular economy

Outlook

- •• HCR injection molding mit recyclat content
 - Offers great potenzial through to the use of peroxides

- •• Use of recyclat in the 3d printing technolgie
 - The challenge her is to use the smallest possible particele sizes
 - Furthermore there should be no catalysator poisen inside of the recyclat

Timo Hofmann, M. Sc. Research Associate

 $\langle \! \rangle$

t.hofmann@uni-kassel.de

Sources

- [1] L. Asaro, M. Gratton, S. Seghar, N. Aït Hocine, Recycling of rubber wastes by devulcanization. Resources, Conservation and Recycling, 2018, Vol. 133, p.250, DOI: 10.1016/j.resconrec.2018.02.016.
- [2] Ghosh, A., Rajeev, R.S., Bhattacharya, A.K., Bhowmick, A.K. and De, S.K. (2003), Recycling of silicone rubber vulcanizate powder on the properties of silicone rubber. Polym Eng Sci, 43: 279-296. <u>https://doi.org/10.1002/pen.10024</u>
- [3] Rupasinghe, Buddhima & Furgal, Joseph. (2021). Degradation of Silicone-based Materials as a Driving Force for Recyclability. Polymer International. 71. 10.1002/pi.6340.
- [4] Ikeda, Yuko & Huang, Wei & Oku, Akira. (2003). Recycling of monomers and fillers from high-temperature-vulcanized silicone rubber using tetramethylammonium hydroxide. Green Chem.. 5.
- [5] Rupasinghe, Buddhima & Furgal, Joseph. (2021). Full Circle Recycling of Polysiloxanes via Room-Temperature Fluoride-Catalyzed Depolymerization to Repolymerizable Cyclics. ACS Applied Polymer Materials. 3. 10.1021/acsapm.0c01406.