

SILICONE ENSURES THE FUTURE OF ELECTRIC MOBILITY

HCR – Excellence

16.04.2024

SILICONE ENSURES THE FUTURE OF ELECTRIC MOBILITY

Company Portrait

Coroflex Understanding of eMobility

Bending and Flexibility Requirements

Savety over Lifetime

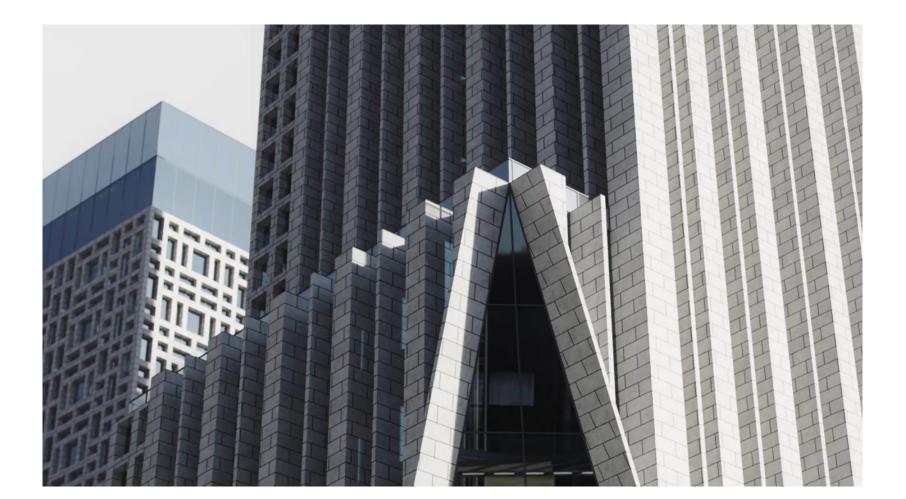
COROFLEX Production Capabilities and Expertise

Wuppertal, Germany

- Production of silicone cables
- Production area: approx. 8,000 m²
- eMobility applications

Kunshan, China

- Production of silicone, fluorine and thermoplastic cables
- Production area: approx. 7,790 m²
- eMobility, Industry, Data, Automotive applications



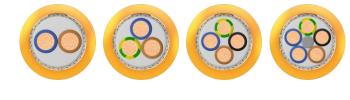
Strzelce Opolskie, Poland

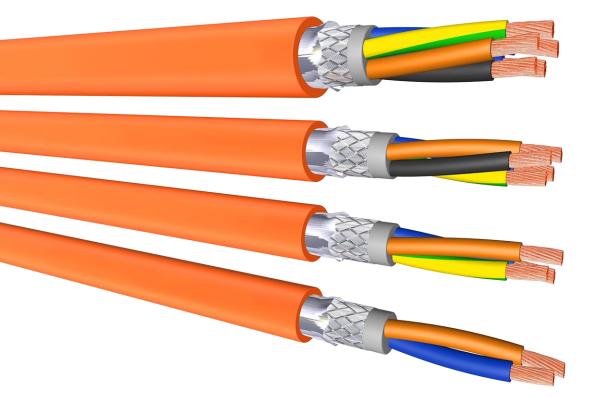
- Production of thermoplastic and fluorine cables
- Production area: approx. 11,841 m²
- Industry, Data, Automotive applications

HIGH-VOLTAGE CABLES FOR ELECTRICAL VEHICLE

Coroflex understanding of eMobility

EVALUATION OF INSULATION MATERIALS FOR THEIR USE IN HV-HARNESSES Coroflex Single-Core High-Voltage Cables Temperature classes T150 and T180 available





Characteristics

- Shielded and unshielded
- Conductor Copper and Aluminum
- Conductor sizes 1.5 mm² up to 120 mm²
- Available voltage classes
 - LV 216 600 Volt a.c. / 1000 Volt d.c.
 - ISO 19642 1000 Volt a.c. / 1500 Volt d.c

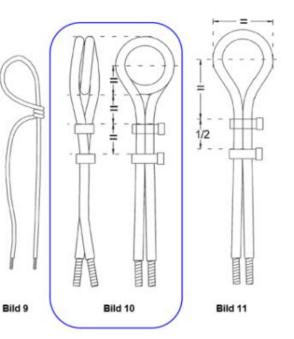
EVALUATION OF INSULATION MATERIALS FOR THEIR USE IN HV-HARNESSES Coroflex Multi-Core High-Voltage Cables Developed already based on processing requirements

Characteristics

- Shielded and unshielded
- Conductor Copper
- Cores 2 x 2.5 mm² up to 5 x 6.0 mm²
- Available voltage classes
 - LV 216 600 Volt a.c. / 1000 Volt d.c.
 - ISO 19642 1000 Volt a.c. / 1500 Volt d.c

FLEXIBILITY AND BENDING

Requirements for static and dynamic installations



Ageing requirements higher than usual according to LV 216-2

 \Rightarrow Mandrel diameter 1 x d_{max} / 240 h @ +205 °C

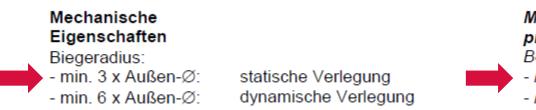
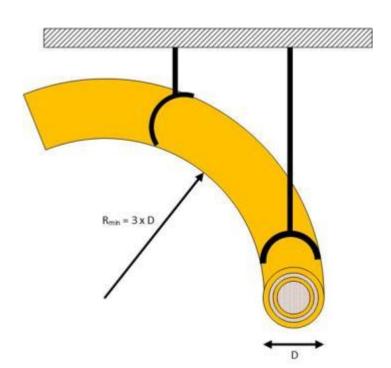

 \Rightarrow Bending with angle 360 ° as an alternative to usual angle 180 °

Tabelle 19							
maximaler Leitungs- durchmesser d _{max} in mm	kleinster zulässiger Biegeradius in mm	maximaler Wickeldorn- durchmesser in mm	Ausführungsart				
≤ 3,0 (≈ bis 2,5 mm²)	$2,0 \times d_{max}$	-	3 mal 360° um sich selbst gewickelt, siehe Bild 9				
> 3,0 und ≤ 5,0 (≈ von 4,0 mm² bis 6,0 mm²)	$2,0 \times d_{max}$	1,5 × d _{max}	 2 mal 360° um Dorn wickeln, Befestigung mit zwei Kabelbindern: 1. Kabelbinder im halben Abstand des entstehenden Schlaufendurchmessers; 2. Kabelbinder im halben Abstand des entstehenden Schlaufendurchmessers, Dorn entfernen (siehe Bild 9). 				
> 5,0 (ab ≈ 6,0 mm²)	$3,0 \times d_{max}$	2,0 × d _{max} <mark>1,0 × d_{max}</mark>	 180° um Dorn gebogen, Befestigung mit Kabelbindern: 1. Kabelbinder im einfachen Abstand des entstehenden Schlaufendurchmessers; 2. Kabelbinder im halben Abstand des entstehenden Schlaufendurchmessers Dorn entfernen (siehe Bild 9). 				

DIELECTRIC BEHAVIOR ⇒ DEPENDENCY OF STATIC BENDING & TEMPERATURE

OEM will increase requirements down to 2 x cable- \emptyset to be tested at short-term ageing 240 h @ T_{O} + 50 °C



Mechanical properties Bend radius: - min. 3 x cable-Ø: - min. 6 x cable-Ø:

static installation dynamic installation

LV 216-2 (9.6.7.4): Definition and specification of the bending radius for static installation

- the installation of the cable, including fasteners, will be performed on one movement level (see figure)
- there are no relative movements between the different attachment points of the cable allowed
- the minimum permissible bending radius for static installation in the vehicle corresponds to 3 times the specified maximum outer diameter of the cable.

Ageing requirements higher than usual according to LV 216-2

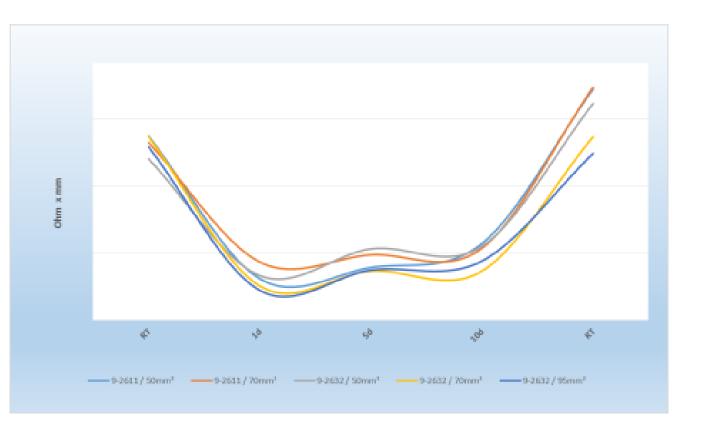
⇒ Ageing tests with bending diameter
 1 x cable-Ø / 240 h @ +205 °C

Measurement Sequence

- 1. Bending Mandrel diameter 1 x d_{max}
- 2. Measurement insulation resistance @ +20 °C
- 3. Thermal ageing 240 h @ +205 °C
- 4. Measurement insulation resistance @ +205 °C - after ageing time 24 h / 120 h / 240 h
- 5. Cooling down 16 h @ +20 °C
- 6. Measurement insulation resistance @ +20 °C
- 7. High-Voltage test
 - 30 minutes 1 kVolt a.c.
 - 5 minutes 5 kVolt a.c.
 - 10 minutes 10 kVolt a.c.
- 8. Rewind the HV-cable
- 9. High-Voltage test
 - 30 minutes 1 kVolt a.c.
 - 5 minutes 5 kVolt a.c.

- 10 minutes 10 kVolt a.c.

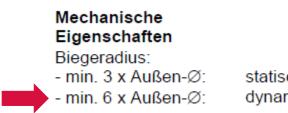
10. Visual inspection

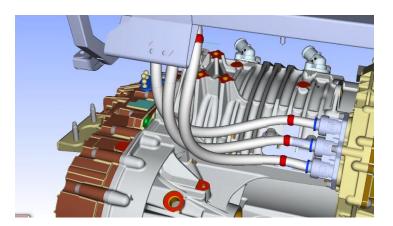


Insulation resistance

- Depending on the temperature
- Influence winding diameter not recognizable
- Influence conductor size not recognizable

High-Voltage Performance

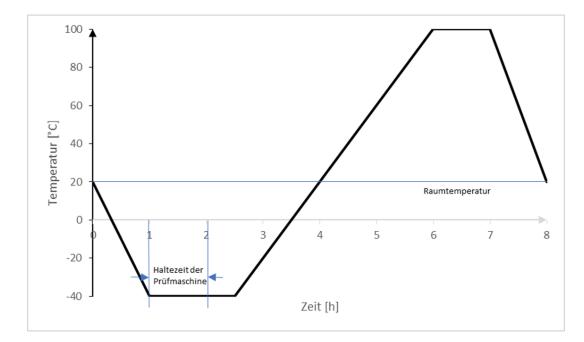

- Requirement normative
 - 30 minutes 1 kVolt a.c.
 - 5 minutes 5 kVolt a.c.
- No defaults
- Requirement additional
 - 10 minutes 10 kVolt a.c.
- No defaults



DIELECTRIC BEHAVIOR ⇒ DEPENDENCY OF STATIC BENDING & TEMPERATURE

OEM will create new requirements for testing of dynamic bending diameter

statische Verlegung dynamische Verlegung Mechanical properties Bend radius: - min. 3 x cable-Ø: - min. 6 x cable-Ø:

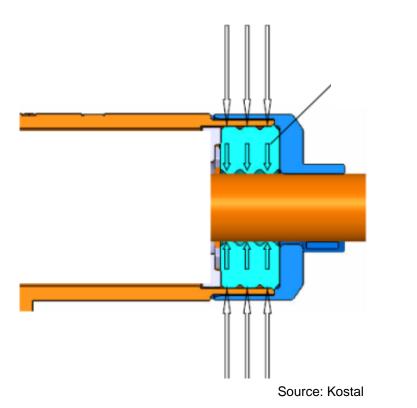

static installation dynamic installation

LV 216-2 (9.6.7.4): Definition and guideline of the bending radius for dynamic installation

- the installation of the cable, including fasteners, will be performed on different movement levels
- relative movements between the different attachment points of the cable are allowed
- for the application in the vehicle, the minimum bending radius must be agreed with the specialist departments
- as a guideline Rmin = 6 x cable-Ø (maximum specified outer diameter of the cable)

COROFLEX PROPOSAL FOR DYNAMIC BENDING TEST FOR HIGH-VOLTAGE CABLES Hydropulse testing based on VW PV 3589 Test requirements customized for High-Voltage Cables

Customized investigations already performed


 8 cycles of 8 h each at 9 Hz with amplitude of +/- 10 mm 226.800 strokes / cycle

SAFETY OVER LIFE-TIME

Fuse protection sealing area HV cable / HV connector

FUSE PROTECTION SEALING AREA HV CABLE / HV CONNECTOR Optimized sealing behavior to protect against moisture.

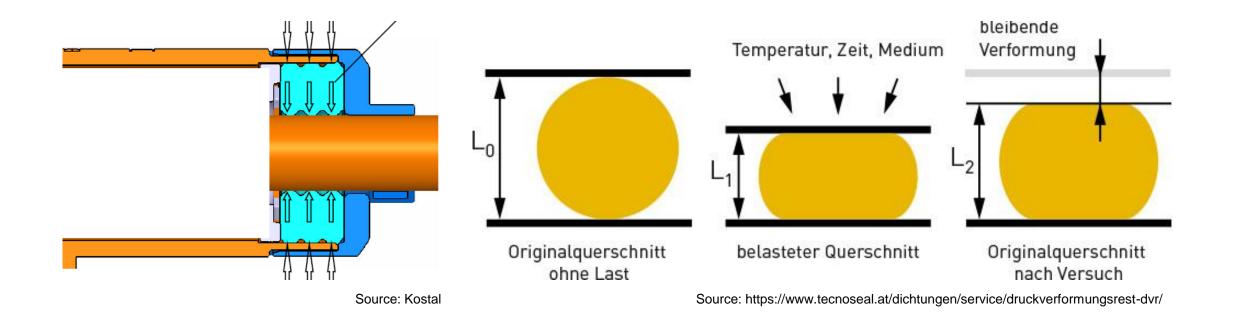
Applied forces through housing / sealing element

Remaining deformation approx. 10% of original cable diameter seems acceptable

Remaining cable deformation:

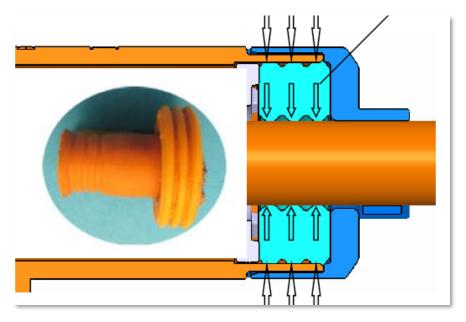
- influences the tightness of the plug contact
- an optimized compression set of the silicone material leads to better tightness:
 - > Depends on silicone quality
- fuse protection by Coroflex addition cured Silicone compounds

FUSE PROTECTION SEALING AREA HV CABLE / HV CONNECTOR


The sealing behavior depends on insulation material qualities and robust manufacturing processes of the HV-cables

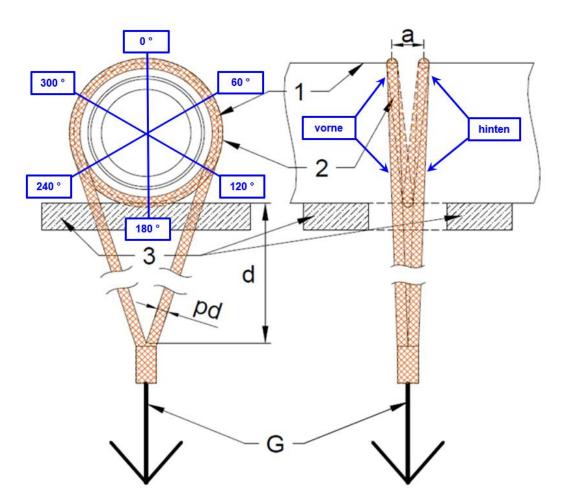
Designation	XPO HV Cable supplier A	XPO HV Cable supplier B	TPU HV Cable Coroflex prototype	Silicone HV-Cable Coroflex 9-2611					
Surface Pressure	1.0 MPa for 4 h								
Operating / Testing Temperature	+ 150 °C	+ 150 °C	+ 150 °C	+ 180 °C					
Penetration depth	approx. 25-30 %	approx. 85-95 %	approx. 45-50 %	approx. 8-10 %					
Pics			S CRUTION! HIGH VOLTAGE! 60						

Source: Coroflex pretests

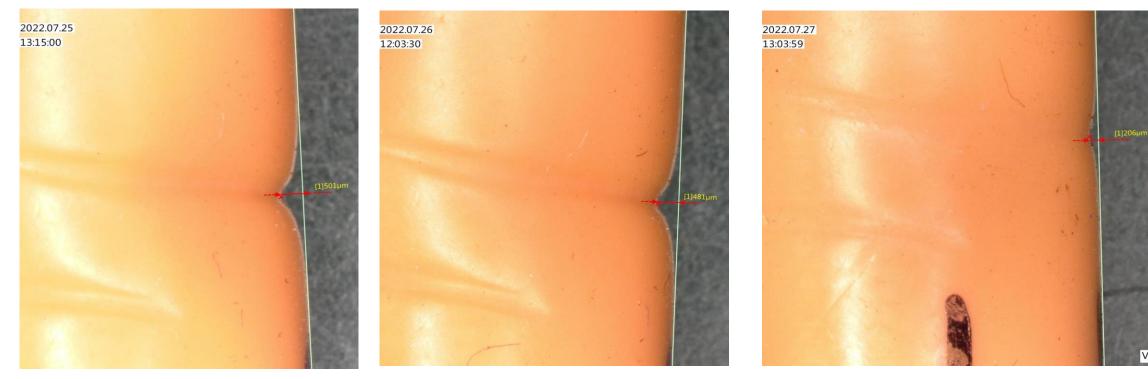

FUSE PROTECTION SEALING AREA HV CABLE / HV CONNECTOR

Investigation determination of compression set directly on High-Voltage Cables

FUSE PROTECTION SEALING AREA HV CABLE / HV CONNECTOR


Investigation determination of compression set directly on High-Voltage Cables

Source: Kostal


In preparation by Coroflex long-term measurements

- T180 Silicone High-Voltage Cables 1,000 h @ +180 °C
- T150 Silicone High-Voltage Cables 1,000 h @ +150 °C

FUSE PROTECTION SEALING AREA HV CABLE / HV CONNECTOR Low slight residual plastic deformation due to relaxation of the insulation material

1. Measurement after ageing 4 h @ T_{O}

2. Measurement

after 24 h @ RT

3. Measurement after ageing 24 h @ T_{O} +25 °C

SILICONE ENSURES THE FUTURE OF ELECTRIC MOBILITY

Material Overview

EVALUATION OF INSULATION MATERIALS FOR THEIR USE IN HV-HARNESSES

Silicone has proven successfully and provides confidence

	SiR T180 & T150	XPO T150	XPE T150 & T125	PP HFFR T125	PVC T115
Bending radius depending on temperature rate	No influence of the temperature	Depending on cross link density	Depending on cross link density	Depending on melt point	Depending on melt point
Specific electrical insulations resistance	Tested at humidity,temperature, aging and bending radius	 Influence of compound filling to humidity and aging 	 Influence of compound filling to humidity and aging 	 Influence of compound filling to humidity and aging 	 Influence of compound filling to humidity and aging
Bending radius and flexibility	High performance elongation values	Good elongation values	Developed for small LV FLR-cables	Developed for small LV FLR-cables	Compound softener
Sealing properties (Compression-Set)	Elastomer Quality Depending on humidity, temperature, aging	 Thermoplastic content predominate in the compound 	 Thermoplastic content predominate in the compound 	Thermoplastic material,depending on sealing method	Thermoplastic material, depending on sealing method

Sebastian Scheer

Global Head of R&D Materials & Test Laboratories Wires & Cables

T +49 202 2681 140 sebastian.scheer@coroflex-cable.com

