ROOM TEMPERATURE VULCANIZING (RTV) SILICONES

Material and Processing Guidelines
WELCOME TO THE WORLD OF RTV SILICONES

Contents

Section 1: Discover Diversity  5
Why WACKER silicones optimize the properties and process technologies of products in all major industries worldwide.

Section 2: Silicone Rubber – Basic Principles  13
Benefit from the chemical structure, components, classes and property profile of our silicone rubber in your application.

Section 3: Understanding RTV Silicones  21
Short cycle times for mass production or ease of processing with minimal investment – RTV silicones score with advantageous properties.

Section 4: Preparing for Production  31
Well begun is half done: From safety, systematic selection and working with RTV silicones to physical and chemical surface preparation methods.

Section 5: Processing RTV Silicones  41
How to process, modify and store silicones to achieve best results for industrial scale production.

Section 6: Spectrum of Technical Applications  57
Sealant adhesives, silicone gaskets, potting, encapsulation, coating and casting.

Section 7: Service  71
Excellent technologies need best-in-class services. WACKER ACADEMY, technical centers and e-business offer excellent expertise and support.

Section 8: Silicones A – Z  77
Facts and figures on RTV silicone rubber.
SECTION 1:
DISCOVER DIVERSITY

Contents
Why WACKER silicones optimize the properties and process technologies of products in all major industries worldwide.

1.1 Diversity in Silicones 6
1.2 Relevant Industries 8
1.3 General Properties of RTV Silicone Elastomers 10
1.1 DIVERSITY OF SILICONES

Technical innovations and rapid production development cycles are routine in specialized industries. However, to achieve market leadership in the long-term, it is necessary to set standards. Modern silicone-based materials increasingly play a key role in achieving such goals.

Room-temperature-vulcanizing (RTV) silicone rubber compounds are a traditional core competence of WACKER. The range of ready-to-use products focuses on numerous applications in the fields of bonding, sealing, potting, encapsulation, coating and casting. Equally broad is WACKER’s experience in processing techniques and material requirements specific to these applications, from DIY-scale right up to industrial production lines.

With more than 60 years’ experience in silicone technology and an above-average commitment to R&D, WACKER has long become indispensable to its customers and participates in their technical progress. This would not be possible without ongoing, confidential dialog and the exchange of knowledge, experience and ideas, which powers a shared undertaking.
1.2 RELEVANT INDUSTRIES

ELASTOSIL®
- Automotive Industry
  - Drive train
  - Seals and gaskets
  - Dampers

LUMISIL®
- Appliances
  - Steam irons
  - Dishwashers
  - Ovens
  - Kitchen hoods
  - Hobs

SEMICOSIL®
- Electrical Industry
  - Battery
  - Fuel cell
  - Electric motor
  - Cables and connectors

WACKER SiGe®
- Health Care
  - Automotive electronics
  - Consumer electronics
  - Power modules

SILPURAN®
- E-Mobility
  - Battery
  - Fuel cell
  - Electric motor
  - Cables and connectors

- Mining and Exploitation

- Electronics

- Aerospace
Discover Diversity

Energy Sector
- Solar industry
- Wind power
- Hydro power
- Oil & gas

Fire Safety Applications
- Cable and pipe duct seals
- Seat cushions

Rubber Industry
- Gluing and fixing of silicones
- O-rings, profiles

Medical Applications
- Orthopedics and prosthetics
- Wound care
- Dental care

Lighting
- LED
- Secondary optics
- Luminaires

Food Industry
- Construction molding
- Industrial printing
- Prototype molding
- Composite industry
- Reproduction molding

Molding and Mold Making
- Utility vehicles
- Marine industry
- Railway systems

Transportation
1.3
GENERAL PROPERTIES OF RTV SILICONE ELASTOMERS

- Excellent thermal resistance
- Outstanding long-term thermal stability from -50 °C to +180 °C
- Excellent release properties
- Very good adhesion to a variety of substrates
- High chemical purity and biocompatibility
- Superior weathering, UV and radiation resistance
- Outstanding dielectric properties

WACKER RTV SILICONE ELASTOMERS
Discover Diversity

- Selective gas permeability
  - Low Young's modulus
  - Long-lasting flexibility
  - Water-repellent surface and low moisture uptake
  - Very good chemical resistance
  - Chemical inertness
  - Excellent physiological tolerance
  - Excellent environmental compatibility and no harmful effects
  - Flame resistance
SECTION 2: SILICONE RUBBER – BASIC PRINCIPLES

Contents
Benefit from the chemical structure, components, classes and property profile of our silicone rubber in your application.

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Chemical Structure</td>
<td>14</td>
</tr>
<tr>
<td>2.2 Components of Silicone Rubber</td>
<td>15</td>
</tr>
<tr>
<td>2.3 Classes of Silicone Rubber</td>
<td>16</td>
</tr>
<tr>
<td>2.4 Properties of Silicone Rubber</td>
<td>18</td>
</tr>
<tr>
<td>2.5 Properties of RTV Silicone Elastomers</td>
<td>19</td>
</tr>
</tbody>
</table>
From Quartz to Silicone
Silicones are made from quartz. While this raw material is available in practically unlimited quantities, the quality is crucial. WACKER converts quartz into silicon metal (Si) via a metallurgical process. Then silicon metal is transformed into silanes by an integrated production system based on the Müller-Rochow process. These silanes are the precursors of polysiloxanes. Polysiloxanes are macromolecules (polymers) comprised of a silicon-oxygen backbone with an organic moiety bound to the silicon atom. They are the basis for around 3,000 different silicone products.

The properties of silicone rubber vary greatly depending on the organic groups and the chemical structure. The organic groups may be methyl, vinyl, phenyl or other groups. According to DIN EN ISO 1043-1, silicones are classified as follows:

**MQ:** MQ, or polydimethylsiloxane (PDMS), denotes a polymer in which two methyl groups are bound to the siloxane backbone.

**VMQ:** VMQ stands for a polydimethylsiloxane in which a number of methyl groups have been replaced by vinyl groups.

**PVMQ:** PVMQ stands for a VMQ in which a number of methyl groups have been replaced by phenyl groups.

**FVMQ:** FVMQ stands for a VMQ in which a number of methyl groups have been replaced by fluorinated organic substituents.
2.2 COMPONENTS OF SILICONE RUBBER

Besides polysiloxanes of different chain lengths, uncured silicone rubber generally contains only a few additional substances, such as crosslinkers, fillers, additives and colorants.

Crosslinkers
A crosslinker is required to convert the uncured rubber into a mechanically stable cured product. Depending on the class of the silicone rubber, peroxides, silanes or SiH-containing polysiloxanes are required for crosslinking, also called curing or vulcanization.

Fillers
Fillers are needed to reinforce the elastic silicone network. The nature, composition and quantity of the fillers have a crucial influence on the properties of the uncured and cured rubber.

Reinforcing fillers
The most frequently used reinforcing filler is pyrogenic silica with very high BET surface areas (higher than 100 m²/g). WACKER HDK® has proven to be especially effective, although precipitated silica, silicone resins or carbon black can also be used.

Non-reinforcing fillers
These function merely as a fill-up. Quartz, finely powdered calcium carbonate, talcum or diatomaceous earths, for example, increase the cured rubber’s resistance to various media.

Additives
Compared with other elastomers, silicone rubber requires few additives because the essential properties are determined by the polysiloxane itself. Thus, a silicone rubber compound may comprise only polymer, cross-linker and filler.

The choice of additives determines the material properties and the processing at the customer. Additives can be catalysts, heat stabilizers, adhesion promoters, rheology modifiers and colorants, for instance. The fact that some of these additives are naturally colored should be taken into account by the customer as this may have an impact on the final color of the compound.

Colorants
Silicone rubber is generally transparent to opaque but can be colored according to customers’ requirements. For this purpose, WACKER offers a broad range of pigment pastes that can easily be blended with RTV silicone rubber compounds.
Uncured silicone rubber is converted into elastomer by vulcanization. Depending on the curing method, the viscosity of the base polymer and the curing temperature, silicones are classified as follows:

- 1-part room-temperature vulcanizing silicone rubber (RTV-1)
- 2-part room-temperature vulcanizing silicone rubber (RTV-2)
- Liquid silicone rubber (LSR)
- High-temperature vulcanizing silicone rubber (HTV).

1-Part Room-Temperature Vulcanizing Silicone Rubber (RTV-1)

RTV-1 silicone rubber formulations are one-part, ready-to-use systems. They consist of polysiloxane, curing agent, fillers and additives. Right after application, the material starts crosslinking on contact with moisture in the air. Byproducts are released during curing. Crosslinking starts with the formation of a skin on the rubber surface and gradually progresses into the compound. Depending on the nature of the crosslinker, a small amount of acetic acid, amine or neutral byproducts, such as alcohol, is released during vulcanization.

RTV-1 silicones are ideal for almost all sealing, bonding and coating applications. They are used in the automotive, construction, electrical engineering, electronics, health care, medical and textile sectors, among others, and also for household appliances.
Silicone Rubber – Basic Principles

2-Part Room-Temperature Vulcanizing Silicone Rubber (RTV-2)
RTV-2 silicone rubber formulations are two-part pourable, spreadable or kneadable compositions that vulcanize after mixing. They usually cure at room temperature (RTV = room-temperature vulcanizing) and form a highly elastic material. There are two different types of crosslinking reactions, either by condensation or by addition. Condensation curing requires an organotin catalyst and always releases byproducts. Addition curing requires a platinum catalyst and does not generate any byproduct.

Special RTV-2 silicone rubber grades can be flash vulcanized using UV light. The vulcanization time can be controlled by adjusting the UV intensity and exposure time.

For process reasons, addition-curing RTV-2 silicone rubber can be formulated as premixed one-component systems that contain a slow-acting catalyst and only vulcanize at elevated temperatures. These systems are characterized by a long shelf life (up to 12 months) when stored at room temperature (20 °C to 25 °C). This group is known as one-component heat-curing silicones and is classified as RTV-2.

Most RTV-2 silicone elastomers – silicone rubber in a cured stage – retain their full elasticity at up to 180 °C, even after long-term exposure. Some products even withstand short heat exposure up to 300 °C. At low temperature, they retain their flexibility down to -50 °C. Some special grades remain flexible even down to -110 °C. The extensive portfolio of RTV-2 silicone rubber products enables the production of silicone elastomers with extremely versatile and highly specialized properties.

Like RTV-1 silicones, RTV-2 formulations are ideal for almost all sealing, bonding and coating applications. They are used for mold making, household appliances and health-care applications as well as in a number of industries such as mechanical engineering, industrial process engineering, lighting technology electronics, optoelectronics and solar/photovoltaics.

WACKER silicone gels and silicone foams are special types of addition-curing RTV-2 silicones. Silicone gels are characterized by a particularly low crosslinking density and produce very soft vulcanisates below the Shore hardness range. They are suitable for various applications in industries such as: automotive, transmission and distribution, as well as health care or wound care. Specific gels such as low-temperature flexible gels and fluorinated materials were developed especially for the automotive industry. They exert only minimal stress on encapsulated components exposed to temperature fluctuations.

Silicone foam formulations are characterized by a high crosslinker content, namely, an SiH-rich polysiloxane. Its basic function is to crosslink the liquid formulation and release hydrogen, which acts as a blowing agent as curing progresses. Silicone elastomer foams are typically used in applications such as lightweight construction, damping, insulation and fire safety.

High-Temperature Vulcanizing Silicone Rubber (HTV)
HTV silicone rubber contains long polymer chains with a high molecular weight, which provides the rubber with a solid consistency. For this reason, HTV silicone rubber is also called solid silicone rubber or High Consistency Silicone Rubber (HCR). HTV silicone rubber cures by means of organic peroxides or a platinum catalyst at an elevated temperature.

Thanks to their outstanding mechanical properties, HTV silicone elastomers are used in a large variety of applications in the automotive, electrical engineering, transmission and distribution, construction, mechanical and process engineering, food, health-care and medical industries.

Liquid Silicone Rubber (LSR)
Liquid silicone rubbers are high-temperature-vulcanizing silicones. Their consistency and addition-curing mechanism provide them with unique processing advantages. Liquid silicone rubber has a lower viscosity than solid silicone rubber (HTV). It is thus pumpable and delivered as a two-component and ready-to-use system. LSR is an addition-curing silicone, where the curing catalyst in component A is a platinum compound and in component B, the curing agent is an SiH-functional polysiloxane. No byproducts are released during the LSR curing process.

Like all silicones, LSR is also used in a wide range of industries: automotive, mechanical and process engineering, electrical engineering, transmission and distribution, construction, food, health care, baby care and the medical sector. WACKER offers specific automotive applications, like fluorinated LSR, which is highly stable on contact with media such as gasoline, engine and gear oils.
2.4 PROPERTIES OF SILICONE RUBBER

Inherent Properties
Silicone elastomers are generally expected to be heat resistant and flexible at both high and low temperatures. In contrast to organic rubbers, this doesn’t come at the expense of the other properties. Silicone elastomers keep their excellent mechanical properties over a very wide temperature range. These characteristics, intrinsic to silicone elastomers, are attributable to the polymer and filler structure, not additives or surface treatment.

Material Benefits Resulting from the Polymer Structure
Silicones are characterized by a fully saturated backbone of alternating silicon and oxygen atoms. The Si-O links in the chain have an exceptionally high bond energy of 451 kJ/mol. By comparison, C-C links have a bond energy of 352 kJ/mol. At the same time, the Si-O chain mobility is very high. The organic side groups shield the backbone, so that the surface energy is low.

This results in the following properties:
• Excellent high-temperature resistance combined with low-temperature flexibility
• High resistance to chemicals and environmental influences
• Excellent weathering,
  UV and radiation resistance
• Water-repellent surface.

Material Benefits Resulting from the Filler Structure
Silicone rubber usually contains pyrogenic silica as a filler, e.g., HDK® from WACKER. Since pyrogenic silica and polysiloxanes are very similar in structure, high compatibility is a given, resulting in the following characteristics:
• High transparency
• Good mechanical properties thanks to effective polymer-filler interaction
• Flame resistance and non-toxic combustion products in the case of fire.

High Purity
Compared to many organic elastomers, silicones are considered exceptionally pure. Thanks to their biocompatibility and physiological inertness, silicone elastomers are highly suitable for applications in the food, medical and electronic sectors. For this purpose, WACKER has developed the SILPURAN® brand and specific products within the ELASTOSIL® and SEMICOSIL® ranges. Some of these products feature an exceptionally low ionic or volatile compound content.
2.5 PROPERTIES OF RTV SILICONE ELASTOMERS

General Properties of RTV Silicone Rubber
- Outstanding long-term thermal resistance from -50 °C to +180 °C; Specialty grades: down to -110 °C or up to 270 °C (peak temperature load may be even lower or higher)
- Only slight changes in physical properties between -50 °C and +180 °C
- Low elasticity modulus
- Coefficient of linear thermal expansion approx. 150·10⁻⁶ – 300·10⁻⁶ m/(m·K)
- Outstanding dielectric properties
- Constant properties over a wide temperature and frequency range
- Electrically insulating
- High weathering, UV and radiation resistance
- Fire retardant
- Very good chemical resistance
- Easy to process
- Water-repellent surface paired with low moisture uptake
- Odorless and tasteless (many grades are BfR and FDA compliant)
- High chemical purity
- Chemical inertness and biocompatibility
- High gas permeability

Typical Range of Mechanical Properties
- Density: from 0.97 up to over 3 g/cm³
- Hardness: 20 Shore 00 - 80 Shore A, or jellylike
- Tensile strength: 2 - 10 N/mm²
- Elongation at break: 100 - 900 %
- Tear strength (ASTM D 624): 5 - 30 N/mm
- Compression set (22 h /175 °C) ≥ 5 %

Main Property Options
- (Self-)Bonding or non-adhesive
- Thermally insulating or thermally conductive
- Electrically insulating or electrically conductive
- Wide range of viscosity and hardness
- Pigmentable
SECTION 3: UNDERSTANDING RTV SILICONES

Contents
Short cycle times for mass production or ease of processing with minimal investment – RTV silicones score with advantageous properties.

3.1 RTV-1 Silicone Rubber 22

3.2 RTV-2 Silicone Rubber 24
   Condensation-curing RTV-2 silicones 24
   Addition-curing RTV-2 silicones 26
      – Two-component silicones
      – One-component heat-curing silicones
      – UV-curing silicones
WACKER’s RTV-1 silicone rubber compounds are one-component systems that cure at room temperature. Thanks to their ease of processing, ELASTOSIL® RTV-1 silicones are preferred for applications involving thin layers and tolerable curing times. However, these grades require long curing times if applied in thick layers. This is not compatible with the short cycle times required in mass production. In such cases, fast-curing RTV-2 systems, one-component heat-curing silicones, or UV-curing grades are more advantageous. In all other cases, RTV-1 is appropriate.

ELASTOSIL® RTV-1 silicones owe their popularity to their advantageous properties in combination with minimal investment.

**Benefits at a Glance**
- Very easy handling and processing
- Low capital investment for processing equipment
- Very good adhesion to a large variety of substrates
- Insensitive to inhibition by other substances
- Available as flowable, self-leveling or non-sag grades

**Curing Chemistry**
ELASTOSIL® RTV-1 silicone rubber compounds consist of polysiloxanes, curing agents, fillers and, in some cases, solvents and/or additives. RTV-1 silicones require air moisture to cure. Since a small amount of by-products is released during crosslinking, RTV-1 silicones are classified as condensation-curing materials. The various RTV-1 systems available at WACKER use different types of curing agents. Small amounts of byproduct specific to the curing agent used are released during curing:
- ELASTOSIL® E: acetic acid
- ELASTOSIL® A: amine
- ELASTOSIL® N: oxime or alcohol.
Skin Forming and Curing

The crosslinking of RTV-1 silicone rubber starts on contact with air moisture. Beginning with the formation of a skin on the surface of the silicone rubber, it gradually works its way into the compound. The curing rate of these silicones is limited by the diffusion speed of the moisture, which typically averages 1 – 2 mm per day at 23 °C and 50 % relative humidity. The rule of thumb is: The higher the relative humidity, the faster the curing rate.

If air access is limited or only possible from one side, the thickness of the applied silicone should not exceed 10 mm. In closed configurations without air access, curing is not possible at all. In such cases, addition-curing RTV-2 silicone rubber grades are recommended.

Increasing Curing Speed

Temperature has a minor effect both on the skin forming time and curing speed of RTV-1 silicone rubber. Curing time can be greatly reduced by increasing the relative humidity. In some special cases, increasing the temperature may help to reduce curing time. The temperature should be raised slowly in order to allow the byproducts and solvents to evaporate. The final temperature may be as high as 200 °C provided that the silicone material films are thin (less than 0.5 mm thick). If the films are any thicker, blistering is likely to occur. Curing is still possible down to approx. -15 °C.

The curing rate of ELASTOSIL® A grades can be accelerated by exposure to a humid atmosphere slightly enriched with up to 1 vol. % of carbon dioxide. During exposure, the relative humidity in the curing chamber or curing tunnel must not exceed 60 %. In fact, optimal curing is achieved using 0.3 to 0.5 vol. % of CO₂ at 30 % to 35 % relative humidity combined with moderate temperature (40 °C to 50 °C, e.g., by using infrared lamps). This method, which is particularly suitable for coating processes, enables full curing of a 500 micron silicone layer within 5 minutes.
3.2 RTV-2 SILICONE RUBBER CONDENSATION-CURING RTV-2 SILICONES

Depending on the application, WACKER offers different RTV-2 silicone rubber grades under the brand names ELASTOSIL®, SEMIOSIL®, LUMISIL®, SILPURAN®, POWERSIL®, WACKER SilGel® and CENUSIL®. RTV-2 silicone rubber formulations are two-component systems that cure when component A (also called rubber base or base compound) is mixed with component B (also called curing agent). RTV-2 silicons can be further classified by curing systems.

Condensation-curing ELASTOSIL® RTV-2 silicons consist of two components. Component A contains polymer and – if required – fillers and additives. Component B contains crosslinker and a catalyst. When components A and B are mixed, the mixture immediately starts curing to form the elastomer. The mixing ratio A:B varies between 1:1 and 100:1, depending on the selected grade. For non-adhesive potting or mold making grades, the proportion of component B typically ranges from 3 to 5 wt.% based on component A. In contrast, the two components of self-adhesive, condensation-curing ELASTOSIL® RTV-2 silicons typically have an A:B mixing ratio of 8:1 to 12:1.

Benefits at a Glance

- Rapid curing, compared to RTV-1 silicones
- Crosslinking can be slightly accelerated by raising the temperature
- Curing of thick layers possible
- Flowable, self-leveling or non-sag grades
- Self-adhesive grades with very good adhesion to a large range of substrates
- Almost insensitive to inhibition by the presence of other substances

Curing Chemistry

From the chemical point of view, the crosslinking of condensation-curing RTV-2 silicons is similar to the vulcanization of RTV-1 silicone rubber. However, in contrast to the latter, the moisture required to properly cure RTV-2 silicons is already included in the base compound (component A). Condensation-curing ELASTOSIL® RTV-2 silicone rubber therefore does not require air moisture to vulcanize, making it suitable for substrate configurations where air access is limited. As the system crosslinks, alcohol is released as a byproduct. This causes a reduction in weight and three-dimensional shrinkage of the vulcanizate to the order of < 3 % by volume.
Potlife and Curing Time

The reactivity of condensation-curing RTV-2 silicone rubber is described by the parameters “potlife” and “vulcanizing time” (or “curing time”). The potlife usually indicates the maximum period of time during which the mix of component A and B is still pourable, spreadable or kneadable. For applications in which good flowability is an important requirement (e.g., encapsulating electrical or electronic components with very small gaps), the time required for the initial viscosity value to double is often quoted as the potlife.

Curing is characterized by an increase in viscosity that causes reduced flowability and a decrease in plasticity. Therefore, the material should be used before the potlife has elapsed. The figures for the vulcanizing time quoted in the technical data sheet specify the time for the rubber to cure until it is tack-free, i.e., when it can be touched without feeling sticky (except silicone gels, which remain tacky). The ultimate properties, however, are usually reached after some hours or even days. The cured rubber should not be used until all byproducts formed have completely evaporated.

Potlife and vulcanizing time can be modified within limits by choosing a fast or slow curing agent and by adjusting the ratio of base compound (component A) to curing agent (component B). Catalysts and mixing ratios are specified in the technical data sheets of each rubber grade.

Modifying Curing Speed

Condensation-curing ELASTOSIL® RTV-2 silicone elastomers typically have a potlife range between 5 and 45 minutes, and take 15 to 90 minutes to cure. Both potlife and curing time can be adjusted by selecting either a “slow” or a “fast” curing agent and by varying the mixing ratio within certain limits. To ensure reliable processing, however, the potlife must not be less than 2 minutes. The more curing agent used, the shorter the curing time.

If the amount of curing agent (component B) is lower than prescribed, incomplete curing will result yielding soft or even tacky rubber with low mechanical strength. The elastomer’s resistance to swelling by solvents or casting resin components is also significantly reduced. If the amount of curing agent is higher than prescribed, the resulting elastomer contains an excess of crosslinking agent resulting in the following effects:

- Decreased release properties of the rubber
- Increased hardness
- Reduced elasticity
- Embrittlement (where air moisture is present, the elastomer will carry on curing).

Curing speed can be slightly accelerated by raising the temperature. Heating, however, must not exceed 80 °C before curing is completed, otherwise the silicone rubber could be destroyed. At temperatures above 80 °C, the crosslinking reaction is reversed and the system either remains tacky or the consistency reverts to a soft state.

Modifying Adhesive Properties

Depending on the type of curing agent, condensation-curing ELASTOSIL® RTV-2 silicone elastomers are self-adhesive or non-adhesive. For example, it is possible to transform non-adhesive ELASTOSIL® M grades into self-adhesive material by choosing a curing agent from the WACKER® Catalyst T7x or WACKER® Catalyst T8x series.
3.2 RTV-2 SILICONE RUBBER ADDITION-CURING RTV-2 SILICONES

Two-Component Silicones
Addition-curing RTV-2 silicone rubber compounds consist of two components (A and B), one of which contains polymer and crosslinker, the other, polymer and a platinum catalyst. When the two components are mixed, they cure to form the elastomer product.

The mixing ratio of addition-curing RTV-2 silicone rubber components is typically 1:1, 9:1 or 10:1 by weight, depending on the chosen product. A different ratio of A:B generally can lead to incomplete curing or to significant changes in the product properties. Unless otherwise specified, the two components must always have the same batch number.

Benefits at a Glance
- Rapid curing at room temperature, even of thick layers
- Crosslinking is significantly accelerated by raising the temperature
- No byproducts, no weight loss and practically no shrinkage (< 0.1 %) on curing
- Self-adhesive grades show very good adhesion to a large variety of substrates
- Low compression set
- Excellent media resistance
- Outstanding heat resistance
- Available as flowable, self-levelling and non-sag grades

Curing Chemistry
Addition-curing RTV-2 silicones cure via a completely different mechanism to that of condensation-curing systems: when the two components are mixed, the polymer, a platinum catalyst and the curing agent are brought into contact with each other. During this reaction, the polymer chains crosslink through hydrosilylation of the vinyl groups by means of the hydrogen-containing crosslinker. Since no volatile byproducts are formed during crosslinking, there is neither a risk of reversion of the crosslinking reaction at elevated temperature, nor chemical shrinkage of the vulcanizate due to weight loss.

Addition Curing

Addition of H-siloxanes to C=C double bonds

Uncured state

Pt-catalyzed hydrosilylation

Elastic state
Potlife and Curing Time
As with condensation-curing RTV-2 silicones, the reactivity of addition-curing RTV-2 silicone rubber formulations is described by the parameters “potlife” and “vulcanizing time”. The potlife usually indicates the maximum period of time during which the catalyzed mix of A and B is processible (or during which the initial viscosity has doubled in value). The figures quoted for the vulcanizing time specify the time to cure until tack-free. The average potlife of RTV-2 silicones typically varies between 30 minutes and 6 hours. For specific grades it can be a few minutes.

Room-temperature-vulcanized addition-curing silicone elastomers reach their ultimate properties after some days. Even vulcanizates produced at a relatively high temperature and therefore usually presumed usable immediately after curing, sometimes continue to crosslink to a certain extent during the subsequent room-temperature ageing. However, the ultimate properties of the vulcanizate can be reached fastest by ageing the cured RTV-2 silicone rubber for several hours at relatively moderate temperatures (100 °C - 120 °C), also known as post-curing.

Modifying Curing Speed
Unlike condensation-curing RTV-2 silicone elastomers, the curing rate of addition-curing RTV-2 silicones can be controlled additionally by altering the temperature, but not by changing the mixing ratio. Therefore, increasing or decreasing the temperature shortens or prolongs both the potlife and curing time. As a rule of thumb, a temperature change of approx. 10 °C halves or doubles potlife and curing speed.

As an alternative, the potlife and curing time can be modified within wide limits by adding WACKER® Inhibitor PT 88 (longer potlife), or WACKER® Catalyst EP (shorter potlife). For further information, please refer to the respective flyer.
3.2 RTV-2 SILICONE RUBBER ADDITION-CURING RTV-2 SILICONES

One-Component Heat-Curing Silicones

One-component, heat-curing silicones contain the same components as the two-component addition-curing silicons, but they are supplied as one-part products with an appropriately long shelf life at ambient temperature. Consequently, they cure by the same chemical reaction, but they need to be heated to the kick-off temperature in order to start the curing process.

The obvious advantage of one-component, heat-curing silicone rubbers is that they can be processed without mixing equipment, making them suitable for both short and long production runs. They should be favored over two-component addition-curing silicones if mixing equipment for two-component products cannot be purchased for technical or financial reasons.

The curing speed of one-component heat-curing silicones depends only on temperature. They are typically cured between 130 °C – 200 °C. Below this range, crosslinking takes much longer or doesn’t even start. This may result in poor adhesion, depending on the nature of the substrates. Conversely, excessive temperature disturbs the vulcanization process and impairs the properties of the vulcanized material.

Please Note

These products are ready to use and do not accommodate fine adjustments of curing speed by adding inhibitor or platinum catalyst. Detailed information about kick-off temperature and curing speed at various temperature levels are shown in the corresponding technical data sheet.

Benefits at a Glance

- Low capital investment
- Suitable for short production runs
- Long potlife at room temperature
- Short curing time at elevated temperature
- Very good adhesion to many substrates
- Available as flowable, self-levelling and non-sag grades
UV-Curing Silicones
In order to support high productivity for large-scale series in customer processes, WACKER has developed UV-curing silicones. These addition-curing silicones contain a unique catalyst that is inactive in the dark. UV light is required to activate the catalyst that triggers the crosslinking reaction. This is basically the same chemical reaction as for addition-curing RTV-2 silicones.

WACKER’s UV grades only need to be irradiated for a few seconds. They then cure completely and rapidly – within a few seconds to a few minutes – at room temperature. The higher the irradiation intensity, the greater the number of active catalyst molecules and the faster the silicone’s curing speed. As long as the material is not exposed to UV light, it remains processible. However, once active catalyst molecules have been generated, curing will continue even if the UV light is switched off.

Please Note
The UV catalyst is also sensitive to daylight.
SECTION 4: PREPARING FOR PRODUCTION

Contents
Well begun is half done: From safety, systematic selection and working with RTV silicones to physical and chemical surface-preparation methods.

4.1 Safety First 32
4.2 Systematic Selection 33
4.3 Working with RTV Silicones 34
4.4 Physical Surface Preparation Methods 36
4.5 Chemical Surface Preparation Methods 38
4.1
SAFETY FIRST

Safety Precautions
Before processing WACKER products, please carefully read the corresponding material safety datasheet available from WACKER subsidiaries on request or visit WACKER’s website (www.wacker.com) where detailed information on all safety matters can be found.

For most WACKER silicone rubber products, standard industrial hygiene precautions are adequate for handling and processing. However, a few products are classified as hazardous and therefore require special safety measures.

For example, curing agents for condensation-curing RTV rubber formulations may cause skin or eye irritation after direct contact. Therefore, appropriate protective measures have to be taken. Additionally, condensation-curing RTV silicones release small amounts of amine, acetic acid, oxime or alcohol during vulcanization.

Some RTV silicone rubber grades may also contain volatile solvents. Vapor formed during vulcanization should not be inhaled. Additionally, the flammability of all volatile compounds must be taken into account. The work place should be well ventilated in accordance with the threshold limit values (TLV) of the respective country.

If, despite all protective measures, skin contact with uncured RTV silicone rubber occurs, clean the affected area immediately with soap and water. If uncured silicone rubber comes into contact with the eyes, irrigate them immediately with copious amounts of water for several minutes. If the irritation continues, immediately seek medical advice.

Cleaning
In the case of spillage, remove the bulk of unvulcanized RTV silicone with a spatula, paper or a rag. Residues can then be washed off with a grease-dissolving solvent, such as acetone, methyl ethyl ketone (MEK), isopropanol, white spirit or a similar isoaliphatic solvent. All tools should likewise be cleaned immediately after use before the silicone rubber has vulcanized. When machines or dispensing equipment are cleaned, white spirit or similar non-polar solvents are recommended. Ideally, cleaning should take place before the rubber is fully vulcanized.

Fully cured silicone rubber is removed mechanically, if necessary, after using a non-polar solvent to swell it. It can also be removed with any commercially available silicone remover or by pyrolysis. It is best to allow surplus catalyzed mix to cure in the containers, after which it can be readily removed.

Instructions for proper disposal of the uncured components and vulcanizates are also included in the respective safety data sheet.
WACKER offers different RTV silicones marketed under the brand names ELASTOSIL®, SEMICOSIL®, LUMISIL®, SILPURAN®, POWERSIL®, WACKER SilGel® and CENUSIL®. The processing properties may differ substantially. It is essential to select the silicone system that suits the customer’s production requirements best.

**Silicone Systems and Production Requirements**

### RTV-2 Silicones
- Addition-curing and condensation-curing 2-part systems that vulcanize at room temperature
- Dual-component metering equipment is needed to process them
- Rapid curing time of a few minutes is achieved by working at elevated temperatures or selecting a suitable curing agent

### One-Component Systems
- One-component systems that cure exclusively at high temperature
- Simple metering equipment suffices to process them
- Curing is fast, sometimes only minutes

### RTV-1 Silicones
- One-component systems that cure at room temperature
- Simple metering equipment suffices to process them; these rubber grades can even be applied manually
- Air moisture is needed for curing

---

**Comparative Curing of a 10-mm Silicone Coating**

<table>
<thead>
<tr>
<th>Time [d]</th>
<th>RTV-2</th>
<th>RTV-1</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- RTV-2 Silicones
- RTV-1 Silicones
WORKING WITH RTV SILICONES

The essential features of room-temperature curing silicone rubber are:
- Consistency
- Viscosity
- Reactivity
- Mechanical properties
- Dielectric properties
- Heat resistance

Consistency
According to the type, WACKER RTV silicone rubber compounds can be pourable, spreadable, non-sag or kneadable. Depending on their consistency, they are suitable for a large number of processing techniques, including spraying, dipping, potting, encapsulating, silk-screen printing and automated application of sealing beads. Non-sag (also called non-slump) grades differ from spreadable grades in their reduced flowability: up to a specific maximum thickness (usually 10 mm), they neither sag nor run off from a vertical or inclined surface. The consistency of kneadable compounds is usually characterized by quoting the penetration. It is determined by using a standard cone under a specific load and given in mm/10. The higher the penetration value, the softer the compound.

Viscosity
The suitability of a compound for a particular processing method is dictated by its rheological properties, for example, its viscosity. The viscosity of a material describes its flow characteristics. The higher the viscosity, the less pourable or the stiffer the compound. The viscosity of RTV silicone rubber compounds is usually between 500 and 2,000,000 mPa·s. The viscosity further depends on the temperature. Precise temperature control during measurement is therefore essential.

Newtonian fluids have a constant viscosity independent from the shearing. In non-Newtonian fluids, the viscosity depends on the shearing and therefore the viscosity needs to be quoted for specific shear rates.
Preparing for Production

The viscosity given for high shear-rates characterizes the flow properties of the compound under intense shearing, for example during metering, extrusion, stirring, knife-coating, etc. The viscosity given for low shear rates describes the performance under low or zero shearing, for example the flow of the compound after application. Many RTV silicone rubber formulations show non-Newtonian and shear thinning behavior. In such cases, it is always necessary to quote the viscosity together with the shear rate at which it has been measured.

If viscosity doesn’t recover immediately after shearing, but is retarded over time, this behavior is called thixotropic. The rheological properties of thixotropic silicone rubber formulations therefore depend on the preliminary treatment, e.g., pumping, stirring, or mixing.

Reactivity
As described above, the reactivity of RTV silicones is characterized by either skin-forming time (RTV-1) or potlife / curing time (RTV-2) or kick-off temperature (one-component heat curing grades). The reactivity of RTV-2 silicone rubber formulations can be modified by the choice of catalyst, mixing ratio and temperature, whereas the curing of RTV-1 grades can be accelerated by increasing relative humidity up to 80%.

Mechanical Properties
The properties of vulcanized silicones are determined to some extent by the type of curing system. For applications causing high mechanical stress, addition-curing grades are more suitable than their condensation-curing counterparts.

The most relevant mechanical properties of cured RTV silicones are hardness, tensile strength, tear resistance, elongation at break and compression set.

The hardness is measured by indentation and is usually quoted on the Shore A scale: the higher the Shore A value, the harder the cured rubber. However, the hardness of printing pads or silicone gels is too low to allow measurement of the Shore A hardness. The Shore 00 indentation scale is used for very soft materials and the penetration is quoted for even softer materials. Whereas higher values mean greater hardness for both Shore 00 and Shore A hardness, the reverse is true for penetration: the higher the value, the softer the vulcanize.

Tensile strength, tear resistance and elongation at break are derived from stress-strain graphs determined by standardized tensile tests. Materials with a tear strength of >10 N/mm and a tensile strength of >5 MPa are so-called high-strength silicones.

Dielectric Properties
Silicones are basically not electrically conductive. The dielectric properties of silicone elastomers are largely independent of consistency, reactivity, mechanical properties and curing system. The breakdown voltage of a cured silicone specimen (1mm thickness) ranges from 20 kV/mm to 100 kV/mm (IEC 60243-1).

Heat Resistance
The heat resistance of silicones is far superior to that of most organic elastomers. Properly cured RTV silicone rubber easily withstands continuous high temperatures of up to 180 °C: the mechanical properties do not alter significantly, and heat stress has no considerable influence on the bonding strength of RTV silicone joints. For particularly demanding applications, where parts are exposed to a temperature higher than 200 °C, even for prolonged periods, RTV silicones need to be heat-stabilized. Metal oxides (such as of iron or titanium) and some carbon black grades are particularly suitable for this purpose. Heat-stable WACKER RTV silicone grades show remarkable stability in the long-term at temperatures of up to 270 °C.

These grades can be exposed to even higher temperatures but then degradation, discoloration or loss in mechanical strength must be taken into consideration.
4.4
PHYSICAL SURFACE-PREPARATION METHODS

Surface Cleaning
The crosslinking agents used in condensation-curing silicones often act as adhesion promoters. Therefore RTV-1 silicones and condensation-curing RTV-2 silicones are robust adhesives or sealants: they adhere very well to many substrates and are relatively tolerant to surface contamination.

Addition-curing RTV silicones, however, are much more sensitive. Small amounts of surface contaminants may cause adhesion problems or even inhibition. Examples of inhibiting pollutants are materials containing sulfur or amino groups, plasticizers, urethanes and organometallic compounds – especially organotin compounds. If a substrate’s ability to inhibit the silicone’s cure is unknown, a small-scale test should be run to assess compatibility.

Regardless of the type of silicone to be used, the surfaces to be bonded must be clean, dry and free from grease, waxes or other contaminants. Suitable cleaners include low-boiling solvents (caution: flammable) that evaporate without leaving any residue, e.g., acetone, isopropanol or aliphatic solvents. Modern cleaning techniques, such as dry-ice blasting or laser cleaning, are also applicable.
Surface Pretreatment
Usually pretreatment is not needed when glass, ceramic materials, aluminum, stainless steel or selected thermoplastics with polar surfaces (PA, PBT, polyester grades, etc.) are to be bonded with a self-adhesive RTV silicone. However, more demanding substrates, such as polyaliphatic polymers, polycarbonate, ABS, PMMA or PPS compounds, require pretreatment (corona discharge, low pressure plasma, flame treatment or Pyrosil® treatment) to obtain reliable bonding. This is also mandatory when joining substrates by means of addition-curing RTV-2 silicones, which are not self-adhesive.

Very smooth plastic and metal surfaces may require slight roughening with sandpaper or, in the case of metal, sandblasting. After removing the abrasive dust, the surface should be cleaned with e.g., isopropanol, white spirit or a similar aliphatic solvent.

Please Note
Despite physical pretreatment, it still might be challenging to achieve a permanent bond with some substrates that contain plasticizers, anti-oxidants, bitumen or oils with a tendency to migrate.
Perfect Adhesion
Some ELASTOSIL® RTV silicone rubber formulations are inherently self-adhesive, such as all RTV-1 silicone rubber grades. Others contain adhesion promoters to facilitate adhesion to a wide range of substrates. Sometimes, though, priming is advisable and even essential for perfect results.

Primer
The adhesion of RTV silicones can be enhanced by preparing the surfaces beforehand with a primer. Primers are low viscous formulations of reactive silanes and/or siloxanes. While drying, they form a resinous silicone film, to which the RTV silicone rubber bonds during curing. Primers thus promote adhesion between the RTV silicone and the substrate.

Special Characteristics
- Excellent adhesion promotion to various substrates
- Solvent based, thus suitable for various coating techniques like dipping, brushing or spraying
- Miscible with organic solvents for further dilution

There is no “universal primer” suitable for every kind of application. To make a proper choice, both the kind of substrate and the RTV silicone rubber grade must be considered.

Primer Application Step by Step
1. The substrate must be clean (free of dust, grease, oils or other contaminants) and dry. Very smooth surfaces should be roughened, cleaned and degreased as described above.
2. The (diluted) primer is applied by spraying, dipping or brushing (thin coat with no bubbles). For absorbent surfaces, priming must be repeated several times.
3. The primed parts must be air dried for at least 15 minutes.
4. The pretreated surfaces are stored in a clean and dust-free place for minimum 1 hour and maximum 12 hours in order to allow the cross-linking of the primer. Alternatively, the primer can be baked for 15 to 40 minutes at 100 to 150 °C.

Please Note
Primers are sensitive to moisture. Opened containers should always be stored in a cool, dry place with regular checks for cloudiness or white sediment. If there is a white precipitate, the primer should not be used.

### Primer Selection

<table>
<thead>
<tr>
<th>Primer Selection</th>
<th>Kinematic Viscosity in mm²/s</th>
<th>Color</th>
<th>Solvent</th>
<th>Suitable for</th>
</tr>
</thead>
<tbody>
<tr>
<td>WACKER® Primer G 790</td>
<td>1</td>
<td>Yellowish</td>
<td>Isoalkanes/Toluene</td>
<td>General purpose</td>
</tr>
<tr>
<td>WACKER® Primer G 790 TOLUENE FREE</td>
<td>1</td>
<td>Yellowish</td>
<td>Isoalkanes</td>
<td>General purpose</td>
</tr>
<tr>
<td>WACKER® Primer G 791</td>
<td>5,200 / 120</td>
<td>Opaque</td>
<td>Isoalkanes</td>
<td>Silicone-to-silicone bonding</td>
</tr>
<tr>
<td>WACKER® Primer G 795</td>
<td>2</td>
<td>Yellowish</td>
<td>Isoalkanes</td>
<td>General purpose (preferably for addition-curing RTV-2 silicones)</td>
</tr>
<tr>
<td>WACKER® Primer G 718</td>
<td>1</td>
<td>Orange</td>
<td>Acetone/Toluene</td>
<td>Bonding RTV-1 silicones to thermoplastics and metals</td>
</tr>
<tr>
<td>WACKER® Primer FD</td>
<td>2</td>
<td>Yellowish</td>
<td>Acetone/Toluene</td>
<td>Porous, absorbent surfaces</td>
</tr>
<tr>
<td>WACKER® Primer FMP HC</td>
<td>0,8</td>
<td>Yellowish</td>
<td>Isoalkanes</td>
<td>Substrates with Zn-based coatings</td>
</tr>
<tr>
<td>WACKER® Primer AV A/B</td>
<td>5 / 100</td>
<td>Yellowish</td>
<td>Isopropanol</td>
<td>Wood and aluminum (preferably for addition-curing RTV-2 silicones)</td>
</tr>
</tbody>
</table>
Preparing for Production

**Multicomponent Techniques**
Similar to primers, RTV-1 silicone rubber compounds can be used to pre-coat surfaces, thus creating the prerequisite for a durable, firm bond. These materials are supplied ready-to-process in tubes, cartridges or pails, and they cure on exposure to air moisture.

**Step by Step Application**
1. Substrate must be carefully cleaned and degreased if necessary.
2. If required, the RTV-1 silicone rubber can be diluted with a non-polar, water-free solvent (white spirit or a similar aliphatic grade) in order to ease processing.
3. The (diluted) RTV-1 silicone rubber should be applied to a maximum thickness of 0.5 mm, for example with a coating knife, by brushing, screen printing or spraying.
4. If a solvent has been used, the coated parts must be air dried for at least 15 minutes.
5. The pretreated surfaces are stored in a clean and dust-free place. Depending on the air humidity, the optimum bond strength at room temperature is achieved within 12 to 15 hours. The process is much faster between 50 °C and 80 °C and at high humidity. The material must be fully cured prior to further processing.

**Please Note**
Fluorinated thermoplastics require special pre-treatment methods, such as chemical etching. Furthermore, it still might be challenging to achieve a permanent bond with some substrates that contain substances such as plasticizers, antioxidants, bitumen and oils with a tendency to migrate.

**RTV-1 Silicones Suitable for Multicomponent Techniques**

<table>
<thead>
<tr>
<th>Consistency</th>
<th>Type</th>
<th>Color</th>
<th>Solvent</th>
<th>Not recommended for</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flowable</td>
<td>Acetoxy</td>
<td>Transparent</td>
<td>Toluene</td>
<td>Addition-curing RTV-2 silicones Surfaces prone to corrosion</td>
</tr>
<tr>
<td>ELASTOSIL® E 41</td>
<td>Flowable</td>
<td>Acetoxy</td>
<td>Translucent</td>
<td>None</td>
</tr>
<tr>
<td>ELASTOSIL® E 43 N</td>
<td>Self-leveling</td>
<td>Acetoxy</td>
<td>Translucent</td>
<td>None</td>
</tr>
<tr>
<td>ELASTOSIL® N 2010</td>
<td>Flowable</td>
<td>Alkoxy</td>
<td>Translucent</td>
<td>None</td>
</tr>
<tr>
<td>ELASTOSIL® N 10</td>
<td>Flowable</td>
<td>Oxime</td>
<td>Translucent</td>
<td>None</td>
</tr>
<tr>
<td>SILPURAN® 4200*</td>
<td>Self-leveling</td>
<td>Acetoxy</td>
<td>Translucent</td>
<td>None</td>
</tr>
</tbody>
</table>

* for medical applications
SECTION 5: PROCESSING RTV SILICONES

Contents
How to process, modify and store silicones to achieve best results for industrial scale production.

5.1 Basic Guidelines 42
5.2 Manual Mixing 44
5.3 Air Removal 45
5.4 Fully Automated Material Processing 46
5.5 Post-Treatment 47
5.6 Modifying Silicone Rubber 48
5.7 Storage 52
5.8 Trouble Shooting 53
5.1 BASIC GUIDELINES

WACKER RTV silicones can be processed in many different ways. Since the choice of material, application method and processing equipment always depends on a number of factors, the following questions should be clarified first:

- What is the application?
- What are the substrates involved?
- What are the material requirements in terms of the chemical and physical properties of the cured rubber?
- Is a liquid, self-levelling or non-sag RTV silicone formulation the right choice?
- Can a two-component grade be processed, or is a one-component material mandatory?
- Which curing temperature is preferred? Do the substrates involved allow curing at temperature levels higher than room temperature?
- Is adhesion required? If so, will a surface pre-treatment be necessary?
- What equipment is available and how much investment is required, if any?
- What experience/expertise is available for the particular process?
- What type of geometry does the part have? Complex or simple?
- How large is the required production series?
For manual processing of smaller quantities, we recommend the following basic equipment:

- Balance
- Clean beaker made of metal or plastic (preferably polyethylene)
- Pipette or disposable syringe
- Metal or plastic spatula
- Brush to apply low viscous formulations
- Mechanical stirrer, e.g., electric drill with paddle stirrer (for kneadable compounds: roll mill or kneader)
- Vacuum pump (oil or water-jet pump) and vacuum box (e.g., glass or plastic desiccator)
- Grease-dissolving solvent (e.g., white spirit, acetone, methyl-ethyl-ketone, isopropanol).

Depending on their specific rheological properties, RTV silicone rubber compounds can be processed using automatic metering systems at low pressure. Automated dip coating, casting, dispensing, screen printing and spraying is likewise possible with modern application techniques, such as jetting, vacuum potting or vacuum bonding.

A large number of manufacturers offer automatic mixing and metering equipment for WACKER RTV silicones. A comprehensive list is available on request.

Preparing the Components for Processing

Some pourable RTV silicone grades contain large quantities of fillers in order to obtain high thermal conductivity, elevated hardness or improved oil resistance, etc. Depending on the formulation, such fillers may slowly sediment during storage. The same applies to pigments which have been used to color liquid grades. To ensure uniform distribution of the fillers or pigments, the compounds must be thoroughly stirred:

- Prior to processing once removed from the original packaging, preferably using a mechanical stirrer
- Prior to transfer from the original packaging into the metering equipment
- During the time spent in the supply vessels of the metering equipment.

Some grades may thicken slightly during long storage. Stirring prior to use is beneficial and can often restore their optimum flow properties.
5.2 MANUAL MIXING

Flowable RTV-2 Silicone Grades

Manual mixing of two-component RTV silicones is only recommended for flowable compounds. For economical, large-scale processing, the use of automatic metering equipment, which includes static or dynamic mixers, is recommended.

To mix small quantities, a spatula is adequate. If the amount is relatively large, a mechanical stirrer has to be employed. Suitable stirring tools are paddle stirrers with perforated, inclined blades. High-speed stirrers using toothed discs (dissolvers) are also suitable.

The equipment employed must always be scrupulously cleaned before processing addition-curing RTV-2 silicones. It is mandatory to use different equipment for component A and B, as even traces of catalyst will cause the component containing the crosslinker to cure.

It is also mandatory that the two components are thoroughly mixed in the prescribed ratio to form a homogeneous compound. If the components have different colors, they should be mixed until the compound is totally streak free.

Non-Slump RTV-2 Silicone Grades

Small quantities of non-sag grades are best processed from side-by-side cartridges using a pneumatic gun and a static mixer. Small-scale trial mixtures can be prepared in the same way as described above for flowable grades. However, the risk of entrapping air and thus creating blistered vulcanizates has to be taken into account. For processing large quantities of shear thinning/thixotropic grades, we recommend using automatic dosing equipment, which can be run with either static mixers or dynamic mixing heads, depending on the RTV silicone grade.

Important

If the viscosity of the two components differs greatly, the less viscous component tends to accumulate on the wall of the beaker during mixing. This might result in an unevenly cured product. Therefore, it is necessary to scrape the beaker wall with a spatula at short intervals. This also applies when a mechanical stirrer is used for mixing.
授予

5.3 AIR REMOVAL

Air is readily soluble in silicones, which often is the root cause for blistered vulcanizates. Further, if mixing is not done under vacuum or in a closed system, a certain amount of air is unavoidably introduced into the rubber compound. RTV silicone rubber compounds only occasionally present a low enough viscosity to be self-deaerating, allowing entrapped air to escape within the respective potlife.

If voids or bubbles appear during crosslinking, absorbed and entrapped air must be removed from the rubber compound prior to curing. Pourable RTV silicone rubber compounds (i.e., products with a viscosity of up to 200,000 mPa-s) can be deaerated in a vacuum box or a vacuum cabinet at reduced pressure (10 - 20 mbar). An oil pump should be used to obtain such low pressure. If tap water at very low temperature (less than 10 °C) is available, a water-jet pump might also suffice.

The capacity of the container for deaeration should be four times the volume of the product, as the silicone rubber will foam extensively when the vacuum is applied. If the volume of the container is adequate, the rising mix usually collapses before it reaches the rim. However, if it appears likely to overflow, the vacuum can be broken slightly by a small shot of air.

This step should be repeated until the mix collapses completely under full vacuum.

The deaeration process should not take more than 10 minutes, otherwise some volatile compounds essential for curing might escape. If the mix has not collapsed completely by then, either the container was too small or the vacuum was not strong enough to remove all the air trapped in the rubber.

Automatic dosing systems for processing flowable two-component silicones are often equipped with automatic deaeration devices. For demanding applications requiring the complete absence of any voids, dispensing in a vacuum cabinet is recommended.

In contrast to pourable compounds, high viscous or non-sag compounds cannot be de-aerated by evacuation. Using automatic dispensing lines or side-by-side cartridges equipped with static mixers prevents air entrapment during mixing.
5.4 FULLY AUTOMATED MATERIAL PROCESSING

Processing large quantities on an industrial scale requires automatic metering equipment fitted with follower plates allowing the dispensing directly from the original container. Despite their widely differing viscosity, flowable as well as non-slump RTV silicones can be metered and mixed, if applicable, in the same way.

Important
Metering equipment using pressurized air is disadvantageous. There is a significant risk of generating bubbles in the vulcanizate due to the high solubility of air in silicone. For silicone foams, however, the admixing of air to the components can improve the silicone foam structure.

Mixing
RTV-2 silicones require mixing systems. The metering units pump component A and component B in the specified ratio directly from the pails or drums and feed them, supported by additional gear pumps, helical pumps or volumetric piston systems, to the mixing unit, which can be either a static or a dynamic mixer.

Static mixers do not have moving parts, and the material is homogenized via fixed mixing elements on the interior. Dynamic mixers support homogenization with moving parts. The length and diameter of the static mixer as well as the number and shape of the mixing elements influence the mixing quality. The most suitable mixer should be chosen, depending on the rheological properties and the flow rate of the RTV silicone grade.

In case of prolonged production breaks, flushing the mixing unit with the base component, which does not contain the crosslinker is recommended.

Dosing
The (mixed) material is applied to a substrate via a robot-mounted dispensing nozzle. Dispensing systems with fixed nozzles, where a robot moves the construction parts, are also commercially available, as are multi-nozzle or jetting systems. Modern dosing machines offer accurate control of both the metering and dispensing process.

Vulcanization
The applicable temperature and resulting curing time strongly depend on the type of RTV silicone, the volume of material applied and the assembly configuration. RTV-1 silicone rubber is usually cured at room temperature (20 °C to 25 °C) and 40 % to 60 % relative air humidity. Due to the low vulcanization speed and the small amount of by-products released, ventilated curing cabinets with air moisture control are recommended.

Process cycle time may vary between a couple of minutes and days. Condensation-curing RTV-2 silicones usually don’t require air moisture control. They are preferably cured at room temperature. Optionally, curing speed can be slightly accelerated by heating up to a maximum of 70 °C. Ventilation of the curing site is recommended to ensure the safe removal of the evaporated by-products. The process cycle time typically ranges from minutes to hours. Addition-curing RTV silicones can have a different curing time and curing temperature. Some grades can be cured at room-temperature within hours, while others are preferably vulcanized at a higher temperature (80 °C to 200 °C) in order to substantially shorten the curing time down to minutes. Exactly how much time is required depends on the grade, on the heat capacity of the substrate(s) and on the heat transfer rate. Suitable heat sources include heated metal molds, circulating air ovens and IR tunnels.
5.5 POST-TREATMENT

Post-treatment usually means either ageing at room temperature for several days, or exposure to high temperature for a defined time (post-curing). This is performed not only to achieve improved mechanical properties but also to remove volatiles (e.g., byproducts resulting from condensation-curing, or low-molecular polymer components), which is essential in order to meet legal requirements for food-contact or medical applications, for example. In such cases, the relevant FDA, BfR or E.P. 3.1.9 recommendations must be followed.

Condensation-Curing Silicone Rubber
During crosslinking, some volatile byproducts may remain entrapped in the vulcanizate, causing following typical effects:
- Reversion when the silicone rubber is exposed to elevated temperature (> 90 °C)
- A low level of resilience, paired with a compression set of up to 100%
- Significantly reduced media resistance
- The risk of plastics and metal corrosion (due to amines or acetic acid)
- Long-term weight loss and permanent shrinkage, even at room temperature.

Volatile byproducts are completely removed from freshly cured vulcanizates by ageing them for several days at room temperature (rule of thumb: approx. 24 hours per cm thickness to the nearest exposed surface) or for several hours at a maximum of 70 °C (rule of thumb: approx. 6 hours per cm thickness to the nearest exposed surface). During this ageing period, the vulcanizate should be stored open with as much of the surface exposed as possible.

Addition-Curing Silicone Rubber
Since the vulcanizates of addition-curing rubber do not contain volatile byproducts, they can be used immediately after heat-curing. Post-curing is nevertheless recommended if an improvement of the elastomer’s mechanical properties, especially a minimal compression set, is required.

In such cases, it is advisable to carry out additional heat treatment for a number of hours after the silicone rubber has set. During post-curing, exposing the cured silicone to a temperature similar to the future temperature of use is recommended, but it should not fall below 100 °C or exceed 200 °C.

The Right Way to Post-Cure
1. Fresh-air supply
Post-curing must be done in a circulating-air oven with fresh air supply. The volatile components consist predominantly of low molecular siloxanes or other flammable volatiles (e.g., alcohol, amines, acetic acid, oximes etc.), which also have to be removed from the oven during post-curing. To ensure reliable operation, fresh air must be supplied at a rate of 100 - 120 l per minute and kg of silicone to prevent a risk of deflagration (the explosion limits must be considered). Most of the volatile components escape within the initial post-curing period. Good ventilation must be ensured during this time.

2. Placing the parts in the oven
The parts should be positioned with the silicone side facing the hot air flow. Large silicone items should be put on a perforated plate or wire mesh, if possible without contact to each other and such that they are not deformed by their inherent weight.

3. Post-curing time
Tests should be performed to define the optimum conditions for the parts. The volatiles content should be checked by measuring the weight loss. The required post-curing time increases with the thickness of the silicone part. However, following the heating-up phase, post-curing should be conducted for not more than 8 hours, otherwise undesirable thermal aging and/or embrittlement can occur.
5.6
MODIFYING SILICONE RUBBER

WACKER offers various additives in order to modify properties such as viscosity or reactivity or to adjust the elastomer’s properties.

Viscosity

The rheological properties of RTV silicones can be altered over a wide range using various additives. For example, viscosity can be lowered by adding a low-viscous WACKER® AK silicone fluid. The viscosity decreases in proportion to the amount of fluid added.

For addition-curing RTV silicones, WACKER has developed WACKER® VISCOREGLER 64 DILUTING AGENT in order to minimize the impact of the diluent on the mechanical properties. This solvent-free, rheologically effective additive contains reactive groups and is incorporated into the silicone network during addition-curing. It facilitates significant lowering of the addition-curing RTV silicone rubber formulations’ viscosity, while the mechanical properties of their vulcanizates remain more or less constant.

In order to increase the viscosity of flowable RTV silicone formulations, a few percent by weight of pyrogenic silica (such as WACKER HDK® N 20) can be added. A more convenient method is to use thickening additives, thereby transforming certain readily flowable formulations into nonsag ones. While adding 0.3 - 0.5 % WACKER® STABILIZER 43 confers excellent non-sag properties to addition-curing RTV silicones, 1 - 2 % of WACKER® THIXOTROPIC ADDITIVE C is required for condensation-curing RTV silicone grades. The corresponding TDS display all relevant details.

Properties of Silicone Elastomers

Usually WACKER® AK silicone fluids are intentionally added to reduce the original hardness of a cured rubber for a specific purpose, for example to obtain a very soft vulcanizate for printing pads. By increasing the quantity of silicone fluid, hardness, tensile strength and tear strength decrease, while elongation at break increases.

Depending on their viscosity, the silicone fluids have a tendency to separate, since they cannot chemically link to the vulcanized silicone rubber network. As a rule of thumb, the highest migration rate is observed for silicone fluids with a viscosity between 10,000 mm²/s and 50,000 mm²/s. In contrast, silicone fluids with a viscosity below 200 mm²/s show a very low tendency to bleed. Hence, it is possible to tune the vulcanizate’s properties not only in terms of hardness, but also in regard to its oil bleeding capability, just by choosing a silicone fluid with the “right” viscosity.

WACKER® AK silicone fluids do not crosslink and therefore behave like a plasticizer, changing the cured silicone rubber’s mechanical properties to a certain extent. Adding silicone fluids in large quantities (over 20 %) may reduce the vulcanizates’ resistance to swelling agents (solvents, oil, lubricants), while potlife and curing time can increase as a result of the crosslinker dilution. However, if not more than 5 % by weight is added, the influence of the silicone fluids is generally modest.

Additives that Modify the Viscosity and Consistency of RTV Silicone Rubber

<table>
<thead>
<tr>
<th>Product</th>
<th>Increasing Viscosity</th>
<th>Lowering Viscosity</th>
<th>Softening Effect</th>
<th>Oil Bleeding Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>WACKER® AK 35</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WACKER® AK 1000</td>
<td></td>
<td>⬤</td>
<td>⬤</td>
<td></td>
</tr>
<tr>
<td>WACKER® AK 20000</td>
<td></td>
<td>⬤</td>
<td></td>
<td>⬤</td>
</tr>
<tr>
<td>WACKER® VISCOREGLER 64¹</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WACKER HDK® N 20</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WACKER® STABILIZER 43¹</td>
<td></td>
<td>⬤</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WACKER® THIXOTROPIC ADDITIVE C²</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1) For addition-curing RTV silicone rubber formulations only
2) For RTV silicone rubber formulations only
Curing Properties
The vulcanization characteristics of condensation-curing RTV silicone rubber grades cannot be modified by additives. In order to speed up or slow down the curing process, the curing conditions (RTV-1: level of relative air humidity; RTV-2: temperature), the mixing ratio (RTV-2) or the T-series curing catalyst (component B of RTV-2) need to be changed.

The potlife and vulcanization time of addition-curing RTV silicone rubber formulations can be varied within broad limits by adding WACKER® Inhibitor PT 88 or additional WACKER® Catalyst EP. The corresponding TDS display all relevant details including graphs.

WACKER® Catalyst EP
Adding WACKER® Catalyst EP to addition-curing silicone rubber formulations increases their curing speed, i.e., potlife and curing time decrease. As a positive side-effect, the risk of inhibition is reduced at the same time. In many cases, adding up to 0.25 wt. % of WACKER® Catalyst EP (based on the total weight of the silicone rubber mixture) is sufficient to significantly increase curing speed and the formulation’s robustness towards inhibition.

Please Note
WACKER® Catalyst EP should be added either to the component containing the platinum catalyst, or – alternatively – to the catalysed mixture made from component A and component B. Transparent compounds may discolor yellow or slightly brownish upon adding WACKER® Catalyst EP, depending on the quantity used.

WACKER® Inhibitor PT 88
WACKER® Inhibitor PT 88 is a potlife extender that diminishes the reactivity of addition-curing silicone rubber formulations. Consequently, potlife and curing time increase. In most cases, adding up to 0.5 wt. % of WACKER® Inhibitor PT 88 (based on the total weight of the silicone rubber mixture) is sufficient to significantly reduce curing speed. We strongly discourage exceeding the upper limit of 1 wt. %, because large quantities of WACKER® Inhibitor PT 88 result in very long pot lives and might delay the curing of the modified RTV-2 silicone compound at room-temperature for days. Where strongly retarded curing occurs, an elevated temperature is necessary to ensure complete vulcanization.

Please Note
WACKER® Inhibitor PT 88 should be added either to the component containing the crosslinker, or – alternatively – to the catalysed mixture made from component A and component B. WACKER® Inhibitor PT 88 must not be added to the component containing the platinum catalyst, because otherwise the compound will turn brownish.
Examples of Use
The graphs shown below illustrate the usage of WACKER® Catalyst EP or WACKER® Inhibitor PT 88 on the basis of selected addition-curing RTV-2 silicones. The data given is only intended as a guide and should not be used for preparing specifications.
Coloring and Heat Stability

Our pigment pastes don’t just look good. They offer outstanding performance, too. Available in many different colors, ELASTOSIL® Color Pastes FL provide hues that are resistant to light, UV and hot air. And as the color pastes can be mixed together in any ratio, almost any desired color can be obtained.

ELASTOSIL® Color Pastes FL are ready-to-mix preparations comprising very finely powdered pigments and a silicone polymer. For maximum compatibility, the pigments are prepared from similar silicone polymers to those used in RTV silicone rubbers.

ELASTOSIL® Color Paste FL grades are easy to process and allow the cured RTV silicone elastomer to retain its color for a long time, even under adverse conditions. Besides their intensive color, with specific grades, such as ELASTOSIL® Color Paste FL Ivory RAL 1014, ELASTOSIL® Color Paste FL Red Iron Oxide RAL 3013, or ELASTOSIL® Color Paste FL Deep Black RAL 9005, the heat stability of the RTV silicones significantly exceeds the 200 °C limit.

Advantages at a glance

- A modular color scheme composed of 24 basic colors, which provides access to some 80% of the color space just by mixing.
- Highly compatible and easy to mix with WACKER’s RTV silicone rubber
- No adverse effects on the silicone rubber processing
- High color retention, even when exposed to heat, light and weathering
- Most of our color pastes comply with BfR and/or FDA regulations regarding food contact.

Processing

The color of RTV silicones can be modified by adding up to 2 % by weight of one or several ELASTOSIL® Color Paste FL grades. They are most effective for transparent, translucent or white base compounds.

Standard mixing devices can be used for homogenization with the silicone rubber. However, manual mixing is recommended for flowable RTV silicone grades or small material quantities. Also, the risk of entrapping air has to be taken into account for non-sag silicone grades. For economical, large-scale processing, the use of automatic metering equipment, which includes static or dynamic mixers, is appropriate.

Please Note

RTV-1 silicone rubber is sensitive to moisture. All modification must be done under strict exclusion of humidity, which requires special mixing equipment and skilled personnel. For the same reason, ELASTOSIL® Color Pastes FL should not be mixed with the curing agent (component B) of condensation-curing RTV-2 silicone rubber, but always with the rubber base (component A).

Furthermore, ELASTOSIL® Color Paste FL should be homogenized by stirring before use.

In order to obtain a homogeneous mixture, it is mandatory to thoroughly mix ELASTOSIL® Color Paste FL with the RTV silicone rubber until the compound mix is totally streak free and uniform in color. If the viscosity of the respective components differs greatly, the beaker wall must be scraped with a spatula at short intervals. This also applies when a mechanical stirrer is used for mixing. Otherwise, the less viscous component tends to accumulate on the wall of the beaker during mixing, resulting in an unevenly mixed compound.
5.7 STORAGE

If stored in the original closed containers at 5 °C to 30 °C, ELASTOSIL®, SEMICOSIL®, LUMISIL®, SILPURAN®, POWERSIL®, WACKER SilGel® and CENUSIL® silicone rubber formulations have a shelf life of 3 to 24 months, from the delivery date, depending on the grade.

Storage-Induced Increase in Viscosity

For some RTV silicone rubber, storage may cause an increase in viscosity. This is due to a particular polymer/filler orientation that can be reversed at any time by shearing. Hence, the viscosity is automatically reduced when the rubber is processed with automatic dispensing machines, for instance. Mixing or stirring the respective compound prior to use also helps to restore the original viscosity level. Therefore, such RTV silicone rubber formulations can be processed in the normal way within the given shelf life.

Special Requirements for Condensation-Curing Grades (RTV-1, RTV-2 Silicones)

As mentioned above, RTV-1 silicone rubber formulations start curing in the presence of moisture. In a similar manner, WACKER® T-series catalysts of condensation-curing RTV-2 silicones react with air humidity and form siliceous compounds. Condensation-curing RTV-2 silicone rubber formulations require small amounts of moisture (present in the rubber base), which may escape from the packaging when stored open or with a loose lid for a long time. It is important that only the original, sealed containers are used to store condensation-curing silicone rubber formulations and that the packaging is tightly closed for storage once opened.

Special Requirements for Addition-Curing Grades

Even tiny amounts of the platinum catalyst are sufficient to start a reaction on contact with the component containing the crosslinking agent. This type of contamination may be caused just by storing open drums of A and B component next to each other. As a result, the uncured material may form cured particles, or hydrogen might be released. Consequently, the drums must be tightly sealed after use.

## General Information on Storing ELASTOSIL® RTV Silicone Rubber

- Store in closed containers in a dry place at 5 – 30 °C
- Higher average temperatures may shorten the shelf life
- Do not expose to direct sunlight
- When opening the container, make sure that no dirt falls onto the surface of the rubber

## Safety Information:

Please consult our safety data sheets if you require additional safety information.
Vulcanization Problems of Condensation-Curing Silicones

In general, condensation-curing silicones are not sensitive to inhibition. Most of their curing problems originate from inappropriate curing conditions such as low levels of relative humidity (RTV-1), mismatches in mixing ratio (RTV-2) or using excessive heat for curing. Unfavorable assembly configurations can impede the access of air moisture or the release of the condensation reaction’s byproducts and result in improper curing.

Retarded vulcanization of condensation-curing RTV-2 silicone rubber may also occur when the level of water vapor, which is necessary for a proper curing and which therefore is part of the base compound (part A), has dropped below a critical level, e.g., after storing the packaging open or with a loose lid. In such cases, the original curing properties can be restored easily by adding a small quantity of water (1-2 grams per kilogram of base compound) to the base compound (part A) and stirring up thoroughly. The mixture is stored in a tightly closed drum for at least 24 hours at room temperature. During this time, the water evaporates and the rubber becomes saturated with sufficient moisture for proper curing. The compound can then be used.

Important for RTV-1 Silicone Rubber

If the level of relative humidity falls below 30 %, the vulcanize’s surface may remain tacky. At a relative humidity of 5 % or below, curing may even stop completely. The humidity must be raised by means of evaporators, atomizers, or a climate chamber must be used for curing. Humidity can be easily monitored using a hygrometer. Adding water to the silicone rubber is unsuitable.

Vulcanization Problems of Addition-Curing Silicones (Inhibition)

In contrast to condensation-curing silicones, the vulcanization of addition-curing silicone rubber may be substantially impaired by a number of substances or materials. Such curing inhibition is usually indicated by a permanent surface tackiness, the presence of liquid rubber at the interface to the substrate, or significantly delayed curing.

Typical inhibitors are:

- Various natural and synthetic oils, greases, waxes and resins, as well as substances containing such materials, for example, many release agents and almost all types of plasticine.
- The inhibiting compounds may be present either on the substrate, or in the mixing and dosing equipment. Further sources of inhibiting compounds can be post-curing ovens, drying cabinets used for curing organic rubber, or casting resins.

It is strongly recommended to carry out preliminary trials in order to determine whether inhibiting compounds are present. Methods for removing inhibiting compounds from surfaces are identical to those described for cleaning and preparing the substrates (see above).

- Various natural and synthetic oils, greases, waxes and resins, as well as substances containing such materials, for example, many release agents and almost all types of plasticine.
- The inhibiting compounds may be present either on the substrate, or in the mixing and dosing equipment. Further sources of inhibiting compounds can be post-curing ovens, drying cabinets used for curing organic rubber, or casting resins.

It is strongly recommended to carry out preliminary trials in order to determine whether inhibiting compounds are present. Methods for removing inhibiting compounds from surfaces are identical to those described for cleaning and preparing the substrates (see above).
Problems Linked to Mixing Ratio
It is absolutely essential to accurately meter two-component RTV silicones in the recommended mixing ratio. Only a firm ratio of A:B guarantees a stable dispensing process and reproducible results. Metering is possible either by weight or by volume.

Important
In general, the TDS state the mixing ratio in parts by weight. If mixing by volume is requested, the mixing ratio by volume must be calculated using the density of the respective component.

Depending on the type of RTV-2 silicone, improper mixing ratio may cause one or several of the following effects:

**Situation 1**
Excess amount of the component containing the crosslinker
- Reduced potlife
- Increased hardness and tensile strength
- Reduced maximum elongation and tear resistance
- Post-curing effects at room temperature (embrittlement)

**Situation 2**
Insufficient amount of the component containing the crosslinker
- Delayed or incomplete crosslinking
- Soft, limp vulcanizates
- Low mechanical strength of the vulcanizates
- Increased susceptibility to swelling
- Poor adhesion.

Problems Linked to Temperature
When accelerating the vulcanization of condensation-curing silicones, the temperature should not exceed 70 °C. Otherwise, the result will be a limp, putty and sticky vulcanizate. Further defects such as bubble formation, blistering or uneven surfaces (orange peel, pinholes) may arise. Addition-curing silicones can be heat cured (up to 250 °C). It is important to keep in mind that increasing temperature will cause a corresponding decrease in the potlife. To prevent premature vulcanization during processing, it is advisable to control the temperature both of the production place and the metering and mixing device.

If curing is accelerated by heat, the volume of curing rubber increases due to thermal expansion. During cool-down of the cured rubber to room temperature, shrinkage will occur. This can result in a distortion of the vulcanizate’s geometry and applies both to condensation- and addition-curing RTV. Furthermore, it is important to keep in mind that condensation-curing RTVs are generally prone to chemical shrinkage, irrespective of the curing temperature. Therefore, if dimensional accuracy is required, either curing has to be carried out at the temperature at which the rubber will subsequently be employed or the dimensional change has to be calculated, or determined experimentally, and taken into account accordingly.

It is also important to calculate space for thermal expansion of the silicone during heat cure, especially when vulcanizing takes place in a closed system. Since silicone elastomers can only be compressed by applying extremely high pressure, thermal expansion of the rubber without an “escape” provision can also cause very high pressure with a highly destructive effect.

<table>
<thead>
<tr>
<th>Change in Volume During Curing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Room temperature</td>
</tr>
<tr>
<td>Uncured</td>
</tr>
<tr>
<td>Trouble Shooting</td>
</tr>
<tr>
<td>------------------</td>
</tr>
</tbody>
</table>
| All RTV Silicones | • Delayed curing  
• Bubbles, blisters and voids | • Processing temperature too low  
• Insufficient level of de-aeration |
| RTV-1 Silicones | • Delayed curing  
• Tacky surface  
• Bubbles, blisters and voids  
• White spots on the surface | • Low level of air humidity  
• Inappropriate assembly configuration  
• Low level of air humidity  
• Use of heat while curing  
• Use of heat while curing  
• Contact to water while curing |
| RTV-2 Silicones, Condensation Curing | • Premature curing  
• Delayed curing  
• Limp and sticky vulcanizate  
• Bubbles, blisters and voids  
• Inhomogeneous vulcanizate | • Incorrect mixing ratio  
• Incorrect mixing ratio  
• Lack of moisture in component A  
• Limited/no possibility for byproducts to escape  
• Incorrect mixing ratio  
• Excessive heat while curing  
• Lack of moisture in component A  
• Excessive heat while curing  
• Improper mixing |
| RTV-2 Silicones, Addition Curing | • Delayed curing  
• Improper vulcanizate properties  
• Premature curing  
• Sticky vulcanizate  
• Uncured material on substrate interface  
• Bubbles, blisters and voids  
• Inhomogeneous vulcanizate | • Incorrect mixing ratio  
• Inhibition  
• Incorrect mixing ratio  
• Inhibition  
• Incorrect mixing ratio  
• Inhibition  
• Surface inhibition  
• Humid substrate  
• Contamination with water  
• Improper mixing |
| One-Component Heat-Curing Silicones | • Delayed curing  
• Sticky vulcanizate  
• Uncured material on substrate interface  
• Bubbles, blisters and voids  
• Inhomogeneous vulcanizate | • Curing temperature too low  
• Inhibition  
• Curing temperature too low  
• Curing time too short  
• Inhibition  
• Surface inhibition  
• Excessive heat while curing  
• Humid substrate  
• Contamination with water |
| UV-Curing Silicones | • Delayed curing  
• Limp and sticky vulcanizate  
• Uncured material on substrate interface  
• Bubbles, blisters and voids  
• Inhomogeneous vulcanizate | • Insufficient irradiation level  
• Inhibition  
• Insufficient irradiation level  
• Inhibition  
• Surface inhibition  
• Humid substrate  
• Contamination with water  
• Improper mixing |
SECTION 6:
SPECTRUM OF TECHNICAL APPLICATIONS

Contents
Sealant adhesives, silicone gaskets, potting, encapsulation, coating and casting.

6.1 Sealant Adhesives 58

6.2 Silicone Gaskets 60
– Preformed gaskets
– Cured-in-place gaskets (CIPG)
– Foam gaskets
– Formed-in-place gaskets (FIPG)
– Applying RTV silicones for FIPG and CIPG

6.3 Potting and Encapsulation 65

6.4 Coating and Casting 66
Coating applications 66
Casting applications 68
WACKER brands for coating and casting 69
6.1 SEALANT ADHESIVES

Traditional mechanical joining technologies, such as screwing, soldering, seaming, welding, or riveting, are progressively being superseded by modern adhesive bonding methods, such as sealant adhesives. The reasons are obvious: elastic bonding with silicone sealant adhesives has decisive advantages in terms of handling, functionality, durability and cost efficiency.

Handling
WACKER silicone sealant adhesives can be applied easily and economically either manually or with automated dispensing equipment. Compared to mechanical joining methods, sealant adhesives significantly reduce not only the quantity of parts (e.g., screws, rivets, etc.), but also the number of process steps. Hence, silicone sealant adhesives help to reduce process cycle time.
**Functionality**

- **Bonding efficiency**
  A sealant adhesive acts as glue and sealant at the same time. The need for additional mechanical safeguarding measures often becomes obsolete.

- **High joint reliability**
  Thanks to the good electrical insulating properties of silicones, different metals can be bonded without the risk of galvanic corrosion.

- **Uniform stress distribution**
  Sealant adhesives distribute mechanical strain over the entire bonding area and thus minimize the risk of localized excessive stress.

- **Perfect stress relaxation**
  Thanks to their low Young’s modulus, silicone sealant adhesives effectively compensate thermo-mechanical loads resulting from substrates with a different coefficient of thermal expansion.

- **Versatile applicability**
  Silicone sealant adhesives have a high ability to bond dissimilar materials.

**Cost Effectiveness**

Using silicone sealant adhesives saves costs at different levels of the manufacturing process, for instance by:

- A low level of warehousing due to the small number of parts (e.g., screws, rivets, etc.) to be handled for the joint
- Reduced costs for labor due to fully automated adhesive application
- Wide machining tolerances for the parts to be bonded.
6.2 SILICONE GASKETS

Since gaskets operate at the interface between interior and exterior, hot and cold, or wet and dry, they are frequently exposed to extreme conditions. These severe physical challenges are met perfectly by WACKER silicone gaskets, which perform with absolute reliability.

The respective silicone seals are either manufactured in a separate injection-molding process, or subsequently inserted into the multi-component assembly, or they are “cured in place”. Curing can also take place before the components have been assembled.

Preformed Gaskets
Preformed gaskets (O-rings, surface seals, and profile gaskets) are typically manufactured from liquid silicone rubber (LSR) or high consistency rubber (HCR) in a separate process. There is no adhesion between the inserted gasket and the joint parts. Sealing is achieved solely by compression, making disassembly possible at any time.

<table>
<thead>
<tr>
<th>Sealing Technology</th>
<th>Preformed Gasket</th>
<th>Cured-In-Place Gasket (CIPG)</th>
<th>Formed-In-Place Gasket (FIPG)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone type</td>
<td>LSR, HTV</td>
<td>RTV-1, RTV-2</td>
<td>RTV-1, RTV-2</td>
</tr>
<tr>
<td>Application method</td>
<td>Insert</td>
<td>Dispensing</td>
<td>Dispensing</td>
</tr>
<tr>
<td>Time of assembly</td>
<td>After curing</td>
<td>After curing</td>
<td>Before curing</td>
</tr>
<tr>
<td>Adhesion to substrates</td>
<td>None</td>
<td>Only to one part</td>
<td>To both parts</td>
</tr>
<tr>
<td>Disassembly</td>
<td>Possible</td>
<td>Possible</td>
<td>Impossible</td>
</tr>
<tr>
<td>Mode of sealing</td>
<td>Compression</td>
<td>Compression</td>
<td>Adhesive bonding</td>
</tr>
<tr>
<td>Products</td>
<td>ELASTOSIL® LR</td>
<td>ELASTOSIL® E</td>
<td>ELASTOSIL® E</td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL® R</td>
<td>ELASTOSIL® A</td>
<td>ELASTOSIL® A</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® N</td>
<td>ELASTOSIL® N</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® LR</td>
<td>ELASTOSIL® LR</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® RT</td>
<td>ELASTOSIL® RT</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® SC</td>
<td>ELASTOSIL® SC</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® Solar</td>
<td>ELASTOSIL® Solar</td>
</tr>
<tr>
<td></td>
<td></td>
<td>SEMICOSIL®</td>
<td>SEMICOSIL®</td>
</tr>
</tbody>
</table>
Cured-In-Place Gaskets (CIPG)

CIPG (also known as “dry assembly”) is a typical sealing technology for non-slump RTV silicones. The silicone gasket is applied and adheres only to one of the substrates and thus stays in place without being secured in any way. The parts to be sealed are assembled after the RTV silicone rubber has cured. The sealing effect towards the second joint member is achieved by compression, which calls for silicones with excellent compression set properties. The parts sealed via CIPG can be disassembled at any time. In general, tightness of a CIP gasket is assured on compression of 25 % to a maximum of 35 %. Limiting compression by suitable constructive measures, for example, by applying spacers or by proper groove design is recommended. In principle, the cross section of a silicone bead is not perfectly round-shaped, as the ratio of width (W) to height (H) typically ranges from 1:0.6 to 1:0.8. In order to prevent a CIP gasket from rolling off under load and to stabilize the silicone bead’s position, at least one of the two substrates should be equipped with a groove. Preparatory tooling of the groove is not required, however a clean and oil-free surface is necessary for successful sealing.

As silicones are not compressible, the groove must provide sufficient additional space for the silicone to deform under compression. When in contact with chemicals and fluids, an additional volume increase by swelling needs to be taken into account. The width of the groove should therefore be about the 1.3 to 1.4-fold the silicone bead’s height. It is strongly recommended not to fill the entire groove with silicone.

When assembling parts, it is important to evenly distribute the compression force. Furthermore, distortion of the assembly parts must be avoided in order to keep the assembly tight. For this reason, the parts have to be properly dimensioned and the contact force must be calculated accordingly. Fixing bolts or screws must be placed a suitable distance from each other in order to allow for even distribution of the compression force.
**Foam Gaskets**

RTV-2 silicone foam gaskets are similar to CIP gaskets but they permit higher component tolerances and require less compression force. They are particularly suitable for applications where either pressure can’t be applied evenly (e.g., due to constructional constraints) or the assembly parts can’t withstand high compression force.

The following conditions should be observed:

- Silicone foam gaskets require a compression level of about 30% to 50%.
- The compression of the bead must be controlled by suitable measures, such as spacers or ridges, in order to maintain a constant compression level in the long term.
- Preferably one of the substrates should be equipped with a groove.
- In order to avoid permanent deformation, silicone foam beads must completely cure before they are compressed.
- Post-curing can help to improve the silicone foam gasket’s resilience.

**Foam Gasket Designs**

During the curing process, RTV-2 silicone foam rubber expands to 2 to 4-fold of its initial volume. When the space for this expansion process is limited, e.g., in deep slots or cavities, significant pressure is created on the cavity’s walls. As a result, deformation of the assembly parts can occur, and the foam density is higher than it would be in open conditions (no cavity). Therefore, when foaming RTV-2 silicone rubber in cavities, the ratio of width (W) to height (H) should range from 1:1 to 1:2. For all other configurations, the recommendations described for CIPG apply.

**Calculation of Foam Gaskets**

\[ W : H = 1:1 \text{ to } 1:2 \]

- \( H_r \) Height of rise
- \( H_f \) Height of fill
**Formed-In-Place Gaskets (FIPG)**

In FIPG (also known as “wet assembly”), the parts to be sealed are assembled before the non-slump RTV silicone rubber cures. Therefore, the gasket material adheres to both sides after curing, which enhances the reliability of the seal, but excludes the possibility of posterior disassembly.

Compared to inserted gaskets, FIPG do not require the joint parts to have such high dimensional accuracy. In addition, the cured gasket material stays firmly in place without fixing. Both permit simpler parts design and reduce development costs.

Parts sealed by FIPG are often compressed up to a direct metal-to-metal contact (also called zero gap).

However, the sealing effect is improved when the assembly parts are kept at a distance \( H \) of 0.1 to 1.5 mm in order to compensate relative movements (e.g., vibration, different thermal expansion coefficient, shear load, etc.). This can be achieved by either spacers, external fixtures, or by adding glass beads of specific size to the silicone. Embossing a groove is also a suitable method. Depending on the substrate design and the joining distance, silicone beads of 1.5 - 3.0 mm usually result in sufficiently wide FIP gaskets. For an optimum sealing result, the silicone should have a width \( W \) of 15 - 20 mm after assembling the parts, and must not fall below 6 - 8 mm to ensure tightness.

Since adhesion is crucial for FIPG, the surfaces must be clean and free of grease. Before applying the silicone, contaminations have to be removed. In many cases, unprocessed surfaces provide better conditions for FIPG. Rough surfaces and gaps of up to 3 mm (depending on the silicone grade used) can be sealed.
Using RTV Silicones as FIPG and CIPG

Proper component design, in particular of the grooves and/or fixation points, is decisive for the tightness of FIP and CIP gaskets. For instance, in order to reduce the risk of air entrapment, the groove should not have any undercuts, and the corners should be rounded. The presence of ridges or sharp edges, which may corrupt the silicone bead, must also be avoided.

To ensure a proper application process, the nozzle design, the distance between nozzle and substrate, the extrusion speed, and the moving speed of the nozzle must be optimized in pre-trials. Generally, the dimension of the groove determines the type of the dispensing unit and the size of the dispensing nozzle.

Optimal application requires positioning the nozzle close to the substrate, i.e., at a distance of just a few mm from the bottom of the groove. The silicone bead should be applied in the middle of the groove, which must not run at sharp angles but in curves.

When substrates are additionally fixed with bolts or screws, it is important to keep a specific distance between silicone bead and the bolt holes. The distance is determined by the flexibility of the substrate, the hardness and compressibility of the silicone, and the compression force applied.
6.3 POTTING AND ENCAPSULATION

Reliable operation and the lifetime of electronic devices in different application fields depend on efficient protection from the environment. Potting and encapsulation of electronic control units, sensors, printed circuit boards, semiconductor devices or microchips is accomplished by using silicone encapsulants. With its unique manufacturing process for the silicone raw material polydimethylsiloxane, WACKER is excellently positioned for this market.

WACKER offers a wide range of one- and two-component products for potting and encapsulation applications. Silicone gels offer minimum thermal stress on sensitive parts and ensure that the device will work properly even when exposed to extreme temperature fluctuations or strong vibrations. For sensor applications, gels characterized by particularly low volatility and low bleed are becoming increasingly important. Extra-soft gels are available for sensitive electronic devices such as bonded ICs (Integrated Circuit).

Material Property Options
- Low viscosity or shear diluting
- Variable processing and curing times
- Soft to hard
- Transparent to opaque
- High flame resistance
- High thermal conductivity
- Fuel resistance and NOx resistance e.g., fluoro silicones
- Remarkable low-temperature flexibility (down to -100 °C)
- High thermal shock resistance
- Low shrinkage
- Good adhesion to polymer housings
- Low outgassing
- Low uncured-silicone bleed
- Pronounced damping property
- Specified low ion content
### 6.4 COATING AND CASTING

#### COATING APPLICATIONS

Low viscous RTV silicones can be applied with all common coating methods, such as spray coating, knife coating, dip coating, brush coating or transfer roller coating. The following section gives an overview of the most relevant industrial coating techniques.

**Conformal Coating**

Thin coatings or protective lacquers for PCBs (Printed Circuit Board) or hybrid devices are known as “conformal coatings”. They provide protection against external influences such as dust, light, aggressive media, temperature fluctuations and mechanical stress. They also enhance the dielectric strength of highly complex electronic modules. In mass production, conformal coatings are typically applied by spraying or dispensing. Selective parts of a PCB can even be coated separately (“partial cover by selective coating”).

The above-mentioned methods require specific RTV silicone properties in terms of rheology, potlife and curing characteristics to achieve uniform coating of the protective lacquer. For this purpose, WACKER offers customized silicones, either solvent based or solvent-free. Dedicated SEMICOSIL® and ELASTOSIL® silicone rubber grades meet challenging requirements in terms of productivity, quality, reliability and cost-efficiency.

**Spray Coating**

Spray coating is particularly suitable for parts with complex geometry or for large surfaces. In sectors such as the electrical industry or the food industry, spraying silicones is a common process to equip insulators, electrical coils, baking trays, baking molds, or other devices with a protective silicone layer. Typical objectives are improving hydrophobicity, protection against moisture and atmospheric pollutants and better release.

Since silicones can absorb air, airless spraying systems – as used for high-quality paintwork – are mandatory for spray coating. This avoids unsatisfactory results such as blistering and orange peel. The surfaces to be coated should be thoroughly cleaned beforehand to ensure good adhesion to the substrate.

Spray coating can be used for:
- Low viscous, flowable RTV silicones
- Solvent-based RTV silicone emulsions
- Shear thinning, self-levelling RTV silicones

Coatings based on RTV-1 start vulcanizing during spraying due to contact with air moisture. RTV-2 silicone coatings are usually cured by heating, e.g., in an oven or a heating tunnel, after the spraying process.
Knife Coating or Roller Coating

Knife coating and roller coating are preferred for roll-to-roll processes involving flexible substrates. Both processes are ideal for applying an RTV silicone on textile, plastic film, or non-woven fabrics. For these coating methods, either shear thinning grades or those with medium to high viscosity are required.

With knife coating, the silicone is applied in front of a coating knife or a doctor blade. The shear force applied by the blade lowers the silicone’s viscosity. As a result, the silicone is evenly distributed and its spreadability on the substrate is ensured, which facilitates permeation into the fabric, if applicable. The distance between the blade and the substrate determines the coating thickness – the greater the distance, the higher the thickness. To achieve a very thin coating (approx. 10 μm) the blade is pressed directly onto the substrate. The RTV silicone’s rheology is key to obtaining excellent results with knife coating.

Roller coating is comparable to knife coating in terms of process. The difference is that a transfer roller is used to apply the silicone instead of a knife.

Examples of knife or roller coating applications are:
- Fabrics coatings e.g., for wound dressings, airbags, or baking mats
- Release liner on plastic films or paper
- Silicone laminated plastic films
- Silicone-based skin adhesives

WACKER’s dedicated brand for the health- and wound-care market is SILPURAN®. For knife and roller coating applications, SILPURAN® RTV grades are typically used in:
- Traditional wound care
- Advanced wound care
- Scar treatment
- Ostomy care
- Medical tapes

SILPURAN® products fulfill the most rigorous medical demands: They are free of organic plasticizers, can be sterilized and carry a number of certificates. Selected tests according to ISO 10993 and USP Class VI certification ensure biocompatibility and the highest safety levels for both users and processors. Cleanroom dispensing and packaging in accordance with WACKER Clean Operations standards ensure consistently high product quality.

Dip Coating

In this process, the part to be coated is dipped into uncured RTV silicone. After removing the part from the coating bath, excess silicone must drip off. Then the vulcanization process can start. Better coating results are achieved by rotating the part during the curing process to prevent coating sags. Depending on the silicone type, the coated material is vulcanized by exposure to air (RTV-1) or by exposure to heat (RTV-2 or one-component heat curing grades). Typically, silicones used for dip coating are either low viscous or solvent-based.

Dip coating is a cost-efficient method adapted for small series or prototyping. It is rarely used for mass production as the dip process requires a silicone with a long pot life, whereas mass production usually means fast curing silicones with a short pot life. Dip coating is used, for example, to coat chokes, the coil head of electrical machines, or electrical coils of transformers.
6.4 COATING AND CASTING
CASTING APPLICATIONS

Casting is a process in which uncured material is poured into a silicone mold where it crosslinks. Flowable RTV-2 silicones are often processed by casting, typically for manufacturing:
- Printing pads
- Embossing rollers
- Printer rollers
- Prosthetic and orthopedic items
- Ostomy care items.

In this case, the silicone rubber is infused into a mold as a casting compound in order to obtain a shaped elastomer part. Casting is usually used for complex shapes, small-scale production or where investment is limited.

WACKER silicones for casting applications offer valuable and unique advantages with optimal results:
- Excellent processability and degassing properties
- Low viscosity to allow for a high level of precision in detail reproduction
- High flowability that permits fast mold filling, no matter how intricate the mold is
- Fast curing to enable short demolding times
- High level of tear resistance and release for easy and safe demolding
- Long-term consistency and fatigue resistance for mechanically stressed silicone items
- Excellent resistance to chemicals, such as printing inks, wax, plaster, casting resins or concrete.

RTV silicone rubber is used to manufacture reusable molds, e.g., for molding applications, replica production or rapid prototyping.

The open mold (1) has to be closed (2). Silicone (yellow) is introduced from the bottom so that air (white) can escape from the mold (3) and is not entrapped. After the mold is filled completely (4), the curing process can start. As soon as the material is cured, the mold can be (5) removed.
6.4 COATING AND CASTING WACKER BRANDS

WACKER brands for reproduction and printing applications

ELASTOSIL® M
Molds for rapid prototyping, industrial mass production, concrete moldings, restoration and reproduction, decorative arts, or the composites industry require the highest level of precision, accuracy and reusability. ELASTOSIL® M-series casting silicones have long been recognized as the ideal solution for making all types of silicone rubber molds. Their high elasticity, excellent release properties and optimal durability make ELASTOSIL® M casting grades indispensable for both industrial and artisan mold makers.

ELASTOSIL® RT
In order to print on different surfaces such as paper, porcelain, plastics, or other uneven surfaces, the printing device (printing pad or printer roller) must have constant mechanical properties and outstanding ink-transfer. ELASTOSIL® RT-series casting silicones provide precisely these qualities, making them essential for any printing application. They produce superior print results, even for large print runs.

ELASTOSIL® C
In the composite industry, reusable vacuum bags are manufactured with chemically resistant ELASTOSIL® C silicones. Their fast-curing property permits short production cycles, thus ensuring cost-effective and efficient production of fiber-composite items.

WACKER brands for medical, prosthetic and orthopedic applications

SILPURAN®
WACKER’s dedicated products not only cover knife-coating and roller-coating applications, but also casting applications for the medical industry: SILPURAN® RTV grades are used, for instance, for ostomy care. Here too, SILPURAN® products fulfill the most rigorous medical demands.

ELASTOSIL® P
WACKER silicones are used in many prosthetic applications such as the manufacture of:
- Functional prostheses for fingers, hands and partial-foot prostheses
- Orthoses
- Epitheses
- External breast prostheses
- Liners
- Face masks tailored to fit the wearer perfectly. ELASTOSIL® P-series silicones are ready-to-use and offer customized solutions for the prosthetic industry.
SECTION 7: SERVICE

Contents
Excellent technologies need best-in-class services. Our WACKER ACADEMY, technical centers and e-business offer you extraordinary expertise and support.

7.1 Technical Service and Expertise 72
7.2 WACKER Infoline & E-Business 73
7.3 Regulatory Support 74
7.4 WACKER ACADEMY 75
7.1
TECHNICAL SERVICE AND EXPERTISE

Our application chemists and engineers work closely with our customers, dealing with specific questions from the field. We will support you by finding the optimum product for your specific requirements and by assisting your product development, from material selection to industrial production – worldwide. Our laboratories deal with key issues from specific industrial sectors and have extensive expertise in various application fields.

WACKER SILICONES stands for 360°-silicone expertise and over 50 years of market experience:
• Deep understanding of silicones and silicone processing
• Local technical centers worldwide with experienced laboratory technicians
• Technical consultancy for product selection
• Adjusting standard formulations and customizing to specific requirements
• State-of-the-art analytical equipment to perform tests according to international and local standards and regulations
• Active network of specialists and cross-functional cooperation with other labs and departments
• Consistent product quality worldwide

Thanks to our RTV Clean Operations plant, WACKER is able to produce according to selected GMP criteria and provide clean-room packing classified according to EN ISO 14644-1 Class 8 for high-end health care and electronics applications. Furthermore, UV-curing silicone rubber can be processed under controlled lighting conditions.

Some of our Laboratory Services
• Product adaptation/development
• Range of lab tests:
  – Mechanical properties
  – Adhesion
  – Chemical resistance
  – Thermal, UV and climate ageing
  – Electrical properties.
• In-house application of our RTV silicone rubber formulations on original assembly parts by fully automated metering & dispensing equipment, e.g., for testing or approval series.
7.2 WACKER INFOLINE & E-BUSINESS

Infoline
Our WACKER Infoline is there to provide prompt answers to any questions you may have about our products or services. We’ll provide you with the necessary information, data or facts quickly and expertly via e-mail or phone. We look forward to hearing from you.

Europe, Middle East & Africa, Asia, Latin America
- Toll-free Number Germany: 0800-6279-800
- Toll-free Number International: 00 800-6279-0800
- General Telephone Number: +49 89 6279-1741
- E-Mail info@wacker.com

NAFTA (USA, Canada and Mexico)
- Toll-free Number: +1 888-922-5374 (+1 888-WACKER 4 U)
- E-Mail info.usa@wacker.com

E-Business
WACKER e-solutions simplify business between our customers and WACKER, and offer many possibilities: from global searches and reporting options in our Login4More customer portal to fast order processing solutions and vendor-managed inventory. We compile a tailored service package for you, adapted to the size of your company, your profile and specific wishes.

You can gain considerably greater efficiency through:
- 24/7 availability
- Automatic order processing
- Easy order changes
- Fast processing with far fewer errors
- Maximum planning reliability
- Full transparency
- Paperless invoicing
- Automatic inventory monitoring.
To ensure product safety, we offer you regulatory support. Our experts handle your enquiries on environmental, health and regulatory matters.

This includes the following topics:

- Food contact applications (e.g., BfR, FDA)
- Drinking water approval (e.g., KTW, WRAS, ACS)
- Pharmaceutical and medical applications (e.g., European Pharmacopeia and U.S. Pharmacopeia USP)
- National and international regulations and provisions (e.g., EU directive 2002/95/EC – RoHS, REACH)
- Specific industry requirements (e.g., GADSL, IMDS, automotive industry)
- Specific customer requirements (e.g., banned-substance and substance-avoidance lists)
- Toxicology and ecotoxicology
- Risk assessment
- Organizational assistance.
To transfer its own expertise and market experience, WACKER has founded a unique institution, the WACKER ACADEMY. Here, at a number of sites worldwide, you can take advantage of a versatile, industry-specific seminar program.

This includes:
- Introductory chemistry seminars
- Training programs on particular application fields
- Introductory seminar on silicone rubber for newcomers to the field
- Customized training programs and events, specific to your needs.

You can find the current program at: www.wacker.com/wacker-academy. WACKER ACADEMY centers are located in different regions, exemplifying our policy of making global expertise available right on your doorstep. As a result, we can offer you a seminar program tailored to your needs and your specific markets.

All our seminars are held by experienced specialists – chiefly in-house experts. To make our program even more attractive and ensure it remains up to date, we work closely with universities and research institutes.
SECTION 8: 
SILICONES A–Z

Contents
A list of frequently used technical terms is given below.

Adhesion 78
Coefficient of linear thermal expansion 78
Compression set 78
Density 78
Dielectric constant 78
Dielectric strength 78
Dissipation factor 78
Environmental compatibility 78
Fire behavior 78
Flame resistance 79
Gas permeability 79
Hardness 79
High-energy radiation 79
Heat resistance 79
Ozone resistance 79
Optical properties 79
Penetration 80
Rebound resilience 80
Release properties 80
Reversion 80
Solvent and chemical resistance 80
Shrinkage 80
Surface resistance 80
Tear propagation and notch resistance 80
Tensile strength and elongation at break 80
Temperature behavior 81
Thermal conductivity and specific heat capacity 81
Tracking resistance 81
Viscosity 81
Volume resistivity 81
Water and steam resistance 81
Weathering and UV resistance 81
8.0
SILICONES A – Z

Adhesion
• Self-adhesive RTV silicone rubber is suitable for many substrates.
• The quality of adhesion depends on the nature of the materials to be bonded, the mechanical stress, and possibly a surface treatment (primer, plasma, corona).
• Most superior bonds are obtained on oxidic and siliceous surfaces.

Coefficient of Linear Thermal Expansion
• Coefficient of linear thermal expansion approx. 150-10^{-6}–300-10^{-6} m/(m·K).
• RTV silicone rubber expands during heat curing, resulting into an “apparent” shrinkage on cooling.
• The coefficient of linear thermal expansion depends on the filler content.

Compression Set
• Compression set determined as per ISO 815-B (ASTM D395 B-2) for storage lasting 22h/175 °C, or 22h/125 °C in the case of self-adhesive grades.
• Compression set describes the elastic recovery of a cured rubber, an important characteristic for gasket applications.
• Typical values for RTV silicone rubber: down to 5 %.

Density
• Determined as per ISO 1183-1 A (buoyancy method).
• Typical range for specific density 0.95 – 1.50 g/cm³.
• When using additional inactive fillers (e.g., quartz), values of over 3 g/cm³ can be achieved, for example, to improve swelling resistance or thermal conductivity.

Dielectric Constant \( \varepsilon_r \)
• Dielectric constant \( \varepsilon_r \) determined as per DIN 53 482 or VDE 0303.
• Typical values for silicone rubber: \( \varepsilon_r = 2.7 - 3.3 \) (at 25 °C and 50 Hz).
• This property can be increased up to 150 by using suitable fillers.

Dielectric Strength
• Dielectric strength determined as per IEC 60243-1.
• Typical value for RTV silicone rubber > 20 kV/mm (1 mm sheet, IEC 60243-1).

Dissipation Factor Tan \( \delta \)
• Dielectric dissipation factor Tan \( \delta \)
  – Dissipation factor determined as per VDE 0303.
  – Typical values for loss angle Tan \( \delta \leq 10^{-3} \).
  – Tan \( \delta \) is raised by increasing the filler content/density.
• Mechanical dissipation factor Tan \( \delta \)
  – Determined via measurement of the silicone’s storage modulus and loss modulus.
  – Typical values for gels: tan \( \delta < 0.1 \); typical values for silicone elastomers tan \( \delta > 1 \).
  – Tan \( \delta \) is raised by increasing the crosslinking density or by filler content.

Environmental Compatibility
• Since silicones have the same basic chemical structure as quartz, cured RTV silicone rubber poses no known ecological or physiological risks.

Fire Behavior
• The auto-ignition temperature of cured products is about 430 °C.
• Silicone rubber burns to form a white non-toxic ash of silicon dioxide.
• The resultant combustion gases are usually non-corrosive.
• Specialty grades form a ceramic layer in the case of fire.
Flame Resistance
- Flame resistance determined acc. to ASTM D 2863 test standard by determining the limiting oxygen index (LOI) or acc. to Underwriters Laboratory fire standard (UL 94).
- Typical LOI values of flame retardant grades 27 % to 35 %
- Standard grades normally achieve UL 94 HB (0.5 – 1.0 mm thickness)
- Specialty grades with additives reach UL 94 V0 (1.0 – 4.0 mm thickness).

Gas Permeability
- Determined as per DIN 53 536
- Very high gas permeability compared to other elastomers, e.g., for air 30 times higher than for natural rubber (NR) or 400 times higher than butyl rubber (IIR) (measured at 25 °C)
- The absolute value of a 50 Shore A grade for air at 20 °C and 80 °C is 570 and 1.330 cm³ ∙ mm ∙ m⁻² ∙ h⁻¹ ∙ bar⁻¹ (volume of air measured in cm³, that penetrates a membrane of 1 m² area per hour at a pressure difference of 1 bar and 1 mm thickness)
- Technical advantage, e.g., for contact lenses, textile coatings and some medical applications
- At high temperatures, silicone has similar values to organic elastomers

Heat Resistance
- The mechanical properties of WACKER silicone rubber are retained even at high temperature stress.
- The heat resistance is thereby clearly superior to that of most organic elastomers (cf. ASTM Charta D2000)

Ozone Resistance
- Outstanding resistance of silicone rubber to ozone
- Ozone resistance determined as per DIN 53509

Optical Properties
- The light permeability of unfilled RTV silicone rubber materials is almost 100 % in the visible range from 400 to 760 nm (1 mm layer thickness).
- The cut-off region of highly transparent RTV silicones ranges from 220 – 230 nm.
- The appearance of RTV silicone rubber is determined by fillers. Fumed silica as filler makes the respective grades become translucent due to light scattering.
- The refractive index nD25 is between 1.404 and 1.410 for standard RTV silicone rubber. High refractive index grades achieve values of up to 1.5 and higher.

Relative Permeability of Gases at 25 °C (%)

<table>
<thead>
<tr>
<th>Gas</th>
<th>Relative Permeability</th>
</tr>
</thead>
<tbody>
<tr>
<td>Air</td>
<td>100</td>
</tr>
<tr>
<td>Hydrogen</td>
<td>190</td>
</tr>
<tr>
<td>Oxygen</td>
<td>170</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>80</td>
</tr>
<tr>
<td>Carbon dioxide</td>
<td>1.000</td>
</tr>
<tr>
<td>Ethylene</td>
<td>390</td>
</tr>
</tbody>
</table>

* dep. on grade
Penetration
• The consistency of silicone gels is usually characterized by quoting the penetration. It is determined by use of a standard cone under a specific load and given in mm/10.
• The higher the penetration value, the softer the compound.
• Typical values for soft gels: 300-100 mm/10
• Typical values for tough gels: 30-10 mm/10.

Rebound Resilience
• Rebound resilience determined as per DIN 53 512
• Also commonly known as “snap”
• Measured on 6 mm samples as a ratio of rebound height to the drop height of a pendulum
• Typical values 30 – 70%.

Release Properties
• RTV silicone rubber shows a pronounced release effect versus inorganic and organic materials such as gypsum, concrete, polyester, epoxide, polyurethane, polyamide, polystyrene, PVC, wax and metal alloys.
• This effect is exploited where RTV silicone rubber is used in mold-making compounds to make molded parts or reproductions.

Reversion
• Degradation of the crosslinking network in the cured rubber as a result of chemical or thermal effects. This leads to a permanent decrease of hardness (softening)
• In silicone rubber, at high temperatures (> 200 °C) traces of moisture or free hydroxyl groups in fillers cause cleavage of the Si-O bond in the polymer chain and ultimately the above-mentioned decrease in hardness due to depolymerization
• This process is inhibited by the presence of air
• High heat resistance therefore requires unrestricted access of atmospheric oxygen, and must be taken into account in the design of gasket parts.

Solvent and Chemical Resistance
• The chemical resistance of WACKER silicone rubber generally depends on the crosslinking density, filler used, and filler content.
• With higher filler levels in the silicone rubber, the swelling tendency decreases and resistance is improved.
• High swelling tendency to non-polar liquids such as hydrocarbons, mineral oils and greases.
• Low swelling tendency to polar liquids, such as alcohols, low-molecular ketones, and therefore no negative effect on seal quality.
• Strongly attacked by concentrated acids and alkalis, particularly by oxidizing acids such as sulfuric or nitric acid.

Silicone rubber has good resistance to aqueous solutions of weak acids, alkalis or salts, which are commonly used as cleaning solutions for lines / tubing at 70 – 80 °C in the food industry.

Shrinkage
• Condensation-curing RTV silicones show a volume shrinkage of up to 3 % due to the liberation of volatile by-products.
• Addition-curing RTV silicones cure almost shrink-free (approx. 0.1%).

Surface Resistivity
• Surface resistivity determined as per VDE 0303
• Typical values for insulating silicone compounds: approx. \(10^{12} - 10^{13} \, \Omega\).

Tear Propagation and Notch Resistance
• Tear strength depends on which particular standard is used.
• Typical values when determined as per ASTM D 624 B (crescent): 5 – 30 N/mm.

Tensile Strength and Elongation at Break
• Tensile strength and elongation at break determined as per ISO 37
• Standard test on S1 bar. In some cases, also measurements on small S2 and S3 test specimens, though the values deviate correspondingly
• Typical RTV silicone values: tensile strength — approx. 2 – 8 N/mm\(^2\) (or MPa); elongation at break — approx. 100 % – 900 %
**Temperature Behavior**
- Mechanical properties of silicone elastomers determined at 23 °C (room temperature) as per DIN 53503 or DIN 53505 respectively.
- The change in the mechanical properties is small compared to organic elastomers.
- Typical service temperature range: –50 to +180 °C. Specialty grades: down to -110 °C or up to 270 °C (peak temperature load may be even lower or higher).
- Standard grades harden at very low temperatures (below -45 °C) due to reversible crystallization.
- There is a slow increase in hardness at very high temperatures (> 200 °C) as a result of heat aging.
- At high temperatures (> 180 °C), the organic side groups attached to the silicon atom undergo free-radical cleavage. The resulting free radicals can cause post-curing of the polymer chains, thereby increasing hardness and decreasing tensile strength and elongation at break (brittlement).
- The simultaneous weight decrease of the vulcanize leads to shrinkage.
- The lifetime of the RTV silicone vulcanizate can be increased by the use of heat stabilizers.
- The increased crosslinking density as a result of prolonged thermal loading has a positive effect on the rebound resilience.
- Excellent stable, long-term behavior for electrical insulation at high temperatures is obtained, as oxidative degradation produces quartz-like properties.

**Thermal Conductivity and Specific Heat Capacity**
- Determined as per DIN 52 612.
- The thermal conductivity depends on the type and amount of fillers used.
- Typical value for standard grades at 50 °C: approx. 0.2 – 0.3 W/(m·K).
- Special thermally conductive compounds achieve values of up to 3 W/(m·K).
- Typical values for specific heat capacity: approx. 1.25 kJ/(kg·K).

**Tracking Resistance**
- Silicone rubber generally features high tracking resistance (e.g., CTI 600 as per IEC 60112).

**Viscosity**
- Determined as per DIN EN ISO 3219.
- The viscosity of RTV silicone rubber compounds is usually between 500 and 2,000,000 mPa·s.
- Viscosity depends on temperature and can depend on shear rate.

**Volume Resistivity**
- Determined as per IEC 60093.
- Typical values for insulating silicone rubber grades approx. $10^{15}$ Ω·cm.
- Typical values for conductive RTV grades approx. 50 Ω·cm.

**Water and Steam Resistance**
- Excellent resistance to boiling water.
- Volume decrease in boiling water below 1 %, even after prolonged action.
- Steam sterilization (as per ISO 17665, DIN EN 868-8 at 500 cycles at 134 °C, 5 min.) may slightly change mechanical properties.
- Water (gaseous) absorption of < 0.5 % with virtually no effect on mechanical or electrical properties.

**Weathering and UV Resistance**
- Silicone rubber items are generally insensitive to UV radiation.
- Properties only change slightly even in long-term tests (several years of weathering).
- Unlike with organic elastomers, weathering resistance can be achieved without additives (e.g. organic antioxidants, UV stabilizers, etc.).
WACKER is one of the world’s leading and most research-intensive chemical companies, with total sales of €4.6 billion. Products range from silicones, binders and polymer additives for diverse industrial sectors to bioengineered pharmaceutical actives and hyperpure silicon for semiconductor and solar applications. As a technology leader focusing on sustainability, WACKER promotes products and ideas that offer a high value-added potential to ensure that current and future generations enjoy a better quality of life based on energy efficiency and protection of the climate and environment. Spanning the globe with 4 business divisions, we offer our customers highly-specialized products and comprehensive service via 23 production sites, 18 technical competence centers, 13 WACKER ACADEMY training centers and 48 sales offices in Europe, North and South America, and Asia – including a presence in China. With a workforce of some 13,450, we see ourselves as a reliable innovation partner that develops trailblazing solutions for,
and in collaboration with, our customers. We also help them boost their own success. Our technical centers employ local specialists who assist customers worldwide in the development of products tailored to regional demands, supporting them during every stage of their complex production processes, if required. WACKER e-solutions are online services provided via our customer portal and as integrated process solutions. Our customers and business partners thus benefit from comprehensive information and reliable service to enable projects and orders to be handled fast, reliably and highly efficiently.

Visit us anywhere, anytime around the world at: www.wacker.com

All figures are based on fiscal 2016.
CREATING TOMORROW’S SOLUTIONS

PRODUCT OVERVIEW

INDUSTRIAL SEALING & BONDING APPLICATIONS

Non-slump RTV silicone grades (self-adhesive)

Wacker Chemie AG
Hanns-Seidel-Platz 4
81737 München, Germany
Tel. +49 89 6279-1741
info@wacker.com
www.wacker.com
www.wacker.com/socialmedia

The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies’ raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties’ rights and, if necessary, clarifying the position. Recommendations given in this medium do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.
<table>
<thead>
<tr>
<th>Main characteristics</th>
<th>Brand</th>
<th>Product</th>
<th>Product type / curing system</th>
<th>Cured shrinkage</th>
<th>Heat resistance</th>
<th>Media resistance</th>
<th>Compressibility</th>
<th>Additional features</th>
<th>Food compliance</th>
<th>Component hardness</th>
<th>Cured density</th>
<th>Max. service temperature [°C]</th>
<th>Recommended CIPG FIPG Aspect / color</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Self-adhesive after curing at room temperature</strong></td>
<td><strong>ELASTOSIL® RT 702</strong></td>
<td>RTV-2 / platinum cure (A/B 1:1)***</td>
<td>Sandable putty paste</td>
<td>Non-shrinking</td>
<td>10 min</td>
<td>50</td>
<td>100</td>
<td>No releasing agent</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 711</strong></td>
<td>RTV-2 / platinum cure (A/B 1:1)***</td>
<td>X</td>
<td>Non-shrinking</td>
<td>10 min</td>
<td>50</td>
<td>100</td>
<td>No releasing agent</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 712</strong></td>
<td>RTV-2 / platinum cure (A/B 1:1)***</td>
<td>X</td>
<td>Non-shrinking</td>
<td>10 min</td>
<td>50</td>
<td>100</td>
<td>No releasing agent</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 713</strong></td>
<td>RTV-2 / platinum cure (A/B 1:1)***</td>
<td>X</td>
<td>Non-shrinking</td>
<td>10 min</td>
<td>50</td>
<td>100</td>
<td>No releasing agent</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>SEMICOSIL® 975 TC</strong></td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>Non-shrinking</td>
<td>3 months</td>
<td>90</td>
<td>3.0</td>
<td>30</td>
<td>Low thermal conductivity</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>SEMICOSIL® 988/1K gray</strong></td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>Sealing adhesive</td>
<td>6 months</td>
<td>35</td>
<td>4.5</td>
<td>350</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>SEMICOSIL® 970 TC</strong></td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>X</td>
<td>Thermally conductive</td>
<td>94,000</td>
<td>16 h</td>
<td>65</td>
<td>4.0</td>
<td>90</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>SEMICOSIL® 987 GR</strong></td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>Sealing adhesive</td>
<td>6 months</td>
<td>50</td>
<td>5.0</td>
<td>200</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>SEMICOSIL® 989/1K</strong></td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>Sealing adhesive</td>
<td>6 months</td>
<td>55</td>
<td>5.0</td>
<td>200</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 779</strong></td>
<td>RTV-2 / condensation cure (Base + Catalyst 10:1)**</td>
<td>Alcohol</td>
<td>Coolant resistant, oil resistant</td>
<td>5 min</td>
<td>50</td>
<td>2.8</td>
<td>250</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® N 2189</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Alcohol</td>
<td>Coolant resistant, oil resistant</td>
<td>15 min</td>
<td>45</td>
<td>2.5</td>
<td>250</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 778</strong></td>
<td>RTV-2 / condensation cure (Base + Catalyst 10:1)*</td>
<td>Alcohol</td>
<td>Fast cure</td>
<td>5 min / 10 min*</td>
<td>42</td>
<td>3.5</td>
<td>180</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® E 43 BLACK</strong></td>
<td>RTV-2 / condensation cure</td>
<td>Alcohol</td>
<td>Hard cured</td>
<td>50</td>
<td>2.0</td>
<td>150</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® N 9111</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Alcohol</td>
<td>Tin free</td>
<td>25 min</td>
<td>30</td>
<td>2.2</td>
<td>500</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® N 2199</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Alcohol</td>
<td></td>
<td>15 min</td>
<td>30</td>
<td>2.5</td>
<td>350</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® N 2197</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Alcohol</td>
<td>Flame retardant</td>
<td>20 min</td>
<td>35</td>
<td>2.5</td>
<td>350</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® N 197 Gray</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Oxime</td>
<td>Low MEKO grade</td>
<td>20 min</td>
<td>30</td>
<td>1.2</td>
<td>300</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® SC 835 RTV-2 / platinum cure (A/B 1:1)</strong></td>
<td>Hydrogen gas</td>
<td>Silicone foam</td>
<td>Non-shrinking</td>
<td>150,000</td>
<td>5 min / 10 min*</td>
<td>45</td>
<td>1.0</td>
<td>180</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® SC 833 RTV-2 / platinum cure (A/B 1:1)</strong></td>
<td>Hydrogen gas</td>
<td>Silicone foam, flame retardant</td>
<td>Non-shrinking</td>
<td>17,000</td>
<td>4 min</td>
<td>27</td>
<td>1.2</td>
<td>80</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 724 RTV-2 / condensation cure (Base + Catalyst 10:1)</strong>***</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 728</strong></td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>X</td>
<td>Coolant resistant</td>
<td>24 h</td>
<td>60</td>
<td>4.0</td>
<td>200</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>SEMICOSIL® 986/1K</strong></td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>UV fluorescent</td>
<td>6 months</td>
<td>51</td>
<td>5.0</td>
<td>200</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® E 43 N</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Acetic acid</td>
<td>Tin free</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® E 900</strong></td>
<td>RTV-1 / condensation cure</td>
<td>Acetic acid</td>
<td></td>
<td>10 min</td>
<td>20</td>
<td>0.6</td>
<td>300</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td>**ELASTOSIL® N 199 RTV-1 / condensation cure</td>
<td>Oxime</td>
<td>Low MEKO grade</td>
<td>20 min</td>
<td>30</td>
<td>1.2</td>
<td>400</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
<td></td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 771</strong></td>
<td>RTV-2 / condensation cure (Base + Catalyst 10:1)**</td>
<td>Alcohol</td>
<td>Low density</td>
<td>6 months</td>
<td>55</td>
<td>5.0</td>
<td>200</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® RT 770</strong></td>
<td>RTV-2 / condensation cure (Base + Catalyst 10:1)**</td>
<td>Alcohol</td>
<td>Liquid form</td>
<td>6 months</td>
<td>50</td>
<td>5.5</td>
<td>250</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® SC 870 RTV-2 / platinum cure (A/B 1:1)</strong>***</td>
<td>Hydrogen gas</td>
<td>Silicone foam, thixotropic</td>
<td>40,000</td>
<td>150 s</td>
<td>10</td>
<td>0.35</td>
<td>100</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® SC 835 RTV-2 / platinum cure (A/B 1:1)</strong>***</td>
<td>Hydrogen gas</td>
<td>Silicone foam</td>
<td>15,000</td>
<td>240 s</td>
<td>20</td>
<td>0.45</td>
<td>80</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
<tr>
<td></td>
<td><strong>ELASTOSIL® SC 833 RTV-2 / platinum cure (A/B 1:1)</strong>***</td>
<td>Hydrogen gas</td>
<td>Silicone foam, flame retardant</td>
<td>17,000</td>
<td>4 min</td>
<td>27</td>
<td>1.2</td>
<td>80</td>
<td>Non-shrinking</td>
<td>No</td>
<td>Non-shrinking</td>
<td>1.0</td>
<td>125</td>
</tr>
</tbody>
</table>
PRODUCT OVERVIEW

INDUSTRIAL COATING OR SEALING APPLICATIONS

Flowable RTV silicone grades (self-adhesive)

Wacker Chemie AG
Hanns-Seidel-Platz 4
81737 München, Germany
Tel. +49 89 6279-1741
info@wacker.com
www.wacker.com
www.wacker.com/socialmedia

The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other components of raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties’ rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.
<table>
<thead>
<tr>
<th>Brand</th>
<th>Product type / curing system</th>
<th>Governing formula</th>
<th>By-product of curing</th>
<th>Additional features</th>
<th>Viscosity ([\text{mPa} \cdot \text{s}])</th>
<th>Potlife or skin forming time</th>
<th>Hardness ([\text{Shore A}])</th>
<th>Tensile strength ([\text{MPa}])</th>
<th>Elongation at break ([%])</th>
<th>Tear strength ([\text{N/mm}])</th>
<th>Density, cured ([\text{g/cm}^3])</th>
<th>Recommended max. service temperature ([\degree \text{C}])</th>
<th>Aspect / color</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELASTOSIL®</td>
<td>A 07 RTV-1 / condensation cure</td>
<td>Amine Solvent based</td>
<td>Shrink-free curing</td>
<td>8,000 3 min 20 1.5 300 4.0 1.02</td>
<td>200</td>
<td>Transparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>E 41 RTV-1 / condensation cure</td>
<td>Acetic acid Solvent based</td>
<td>Shrink-free curing</td>
<td>65,000 15 min 40 6.0 350 11.5 1.12</td>
<td>180</td>
<td>Translucent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>E 50 N RTV-1 / condensation cure</td>
<td>Acetic acid Tin free</td>
<td>Shrink-free curing</td>
<td>50,000 10 min 35 1.5 150 5.0 1.07</td>
<td>180</td>
<td>Transparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>E 303 RTV-1 / condensation cure</td>
<td>Acetic acid Solvent based</td>
<td>Shrink-free curing</td>
<td>500 5 min 30 5.0 400 0.90</td>
<td>180</td>
<td>Translucent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>N 10 RTV-1 / condensation cure</td>
<td>Olefine</td>
<td>Shrink-free curing</td>
<td>8,000 25 min 25 1.5 200 2.0 1.03</td>
<td>180</td>
<td>Transparent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>N 2010 RTV-1 / condensation cure</td>
<td>Alcohol</td>
<td>Shrink-free curing</td>
<td>15,000 20 min 25 1.0 200 1.01</td>
<td>180</td>
<td>Translucent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>N 2034 RTV-1 / condensation cure</td>
<td>Alcohol Flame retardant</td>
<td>Shrink-free curing</td>
<td>25,000 20 min 35 2.0 200 1.16</td>
<td>180</td>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 745 RTV-2 / platinum cure (A/B 1:1) X</td>
<td></td>
<td>Shrink-free curing</td>
<td>1,000 4 h 15 1.0 150 0.97</td>
<td>160</td>
<td>Brownish</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>A 234 RTV-1 / condensation cure</td>
<td>Amine Solvent based</td>
<td>Heat resistance</td>
<td>35,000 15 min 36 2.5 200 3.7 1.19</td>
<td>230</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>A 316 RTV-1 / condensation cure</td>
<td>Amine Solvent based</td>
<td>Heat resistance</td>
<td>500 5 min 15 0.8 200 1.02</td>
<td>180</td>
<td>Translucent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>A 59 RTV-1 / condensation cure</td>
<td>Amine Oil resistant</td>
<td>Heat resistance</td>
<td>60,000 45 min 20 1.2 300 3.0 1.43</td>
<td>210</td>
<td>Grey</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>E 10 RTV-1 / condensation cure</td>
<td>Acetic acid</td>
<td>Heat resistance</td>
<td>8,000 10 min 25 2.5 300 7.3 1.10</td>
<td>250</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>E 60 N RTV-1 / condensation cure</td>
<td>Acetic acid Tin free</td>
<td>Heat resistance</td>
<td>80,000 5 min 35 2.5 250 1.07</td>
<td>230</td>
<td>Black / gray / red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>E 70 RTV-1 / condensation cure</td>
<td>Acetic acid</td>
<td>Heat resistance</td>
<td>60,000 15 min 40 3.5 300 5.1 1.24</td>
<td>230</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>N 288 RTV-1 / condensation cure</td>
<td>Olefine</td>
<td>Heat resistance</td>
<td>65,000 50 min 35 3.5 300 5.1 1.09</td>
<td>230</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>N 291 RTV-1 / condensation cure</td>
<td>Olefine Screen printable</td>
<td>Heat resistance</td>
<td>45,000 6 h 40 2.5 200 5.5 1.21</td>
<td>200</td>
<td>Cream white</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>N 294 RTV-1 / condensation cure</td>
<td>Olefine Screen printable</td>
<td>Heat resistance</td>
<td>25,000 6 h 33 2.2 200 4.5 1.21</td>
<td>200</td>
<td>Blue / red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 772 RTV-2 / condensation cure (Base + Catalyst 10:1)*</td>
<td>Alcohol</td>
<td>Heat resistance</td>
<td>35,000 5 min / 10 min 35 2.2 200 1.26</td>
<td>230</td>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 705 1-component heat-curing / platinum cure X</td>
<td></td>
<td>Heat resistance</td>
<td>72,500 6 months 42 3.5 200 3.5 1.24</td>
<td>230</td>
<td>Black</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 706 1-component heat-curing / platinum cure X</td>
<td></td>
<td>Heat resistance</td>
<td>15,000 6 months 30 2.5 200 1.23</td>
<td>210</td>
<td>Red</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 707 W 1-component heat-curing / platinum cure X</td>
<td></td>
<td>Heat resistance</td>
<td>60,000 6 months 42 3.3 270 1.18</td>
<td>230</td>
<td>White</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 708 1-component heat-curing / platinum cure X</td>
<td>UV fluorescent</td>
<td>Heat resistance</td>
<td>75,000 6 months 42 3.5 300 1.36</td>
<td>230</td>
<td>Dark gray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL®</td>
<td>RT 725 RTV-2 / platinum cure (A/B 1:1) X</td>
<td></td>
<td>Heat resistance</td>
<td>35,000 6 h 40 6.0 300 1.10</td>
<td>180</td>
<td>Gray</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* base component to be combined with WACKER® Catalyst T 77 or WACKER® Catalyst T 77 PLUS (please see the corresponding technical data sheet for details)
PRODUCT OVERVIEW

INDUSTRIAL POTTING, ENCAPSULATION OR CASTING APPLICATIONS

Flowable RTV silicone grades

The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies’ raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third-party rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.
<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>General purpose</td>
<td>ELASTOSIL®</td>
<td>RT 402</td>
<td>RTV-2 / condensation cure (Base + Catalyst 100:3)*</td>
<td>Alcohol</td>
<td>Antistatic</td>
<td>13,000</td>
<td>75 min</td>
<td>11</td>
<td>2.0</td>
<td>350</td>
<td>3</td>
<td>1.28</td>
<td>180</td>
<td>Light gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 563</td>
<td>RTV-2 / condensation cure (Base + Catalyst 100:4)*</td>
<td>Alcohol</td>
<td>Excellent flowability</td>
<td>5,000</td>
<td>35 min</td>
<td>11</td>
<td>4.5</td>
<td>120</td>
<td>3</td>
<td>1.27</td>
<td>180</td>
<td>Beige</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT K</td>
<td>RTV-2 / condensation cure (Base + Catalyst 100:4)*</td>
<td>Alcohol</td>
<td>Excellent flowability</td>
<td>7,000</td>
<td>30 min</td>
<td>16</td>
<td>2.0</td>
<td>120</td>
<td>3</td>
<td>1.22</td>
<td>180</td>
<td>Light gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 601</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>Crystal clear</td>
<td>X</td>
<td>3,500</td>
<td>30 min</td>
<td>16</td>
<td>4.5</td>
<td>100</td>
<td>1</td>
<td>1.02</td>
<td>150</td>
<td>Transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 604</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>Crystal clear</td>
<td>X</td>
<td>800</td>
<td>30 min</td>
<td>25</td>
<td>1.0</td>
<td>100</td>
<td>3</td>
<td>0.97</td>
<td>150</td>
<td>Transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 628</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>High tear strength</td>
<td>50,000</td>
<td>60 min</td>
<td>50</td>
<td>3.5</td>
<td>230</td>
<td>11</td>
<td>1.23</td>
<td>180</td>
<td>Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 743 LK</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>Thermally conductive</td>
<td>1,100</td>
<td>2 h</td>
<td>20</td>
<td>3.0</td>
<td>150</td>
<td>1.45</td>
<td>180</td>
<td>Gray</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 745</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>X</td>
<td>1,000</td>
<td>4 h</td>
<td>15</td>
<td>1.0</td>
<td>150</td>
<td>0.97</td>
<td>180</td>
<td>Brownish translucent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 745 St</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>Soft elastomer</td>
<td>X</td>
<td>1,000</td>
<td>4 h</td>
<td>15</td>
<td>1.0</td>
<td>150</td>
<td>0.97</td>
<td>180</td>
<td>Brownish translucent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMICOSIL®</td>
<td>911</td>
<td>RTV-2 / platinum cure (Base + Catalyst 10:1)**</td>
<td>Soft gel, thixotropic</td>
<td>X</td>
<td>8,000</td>
<td>1 h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>160</td>
<td>Translucent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMICOSIL®</td>
<td>912</td>
<td>RTV-2 / platinum cure (Base + Catalyst 10:1)**</td>
<td>Soft gel</td>
<td>X</td>
<td>1,000</td>
<td>Depending on catalyst used</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>160</td>
<td>Translucent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WACKER SIgre®</td>
<td>612</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>Soft gel, crystal clear</td>
<td>X</td>
<td>1,000</td>
<td>150 min</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>160</td>
<td>Translucent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>WACKER SIgre®</td>
<td>613</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>Soft gel, crystal clear</td>
<td>X</td>
<td>200</td>
<td>Depending on catalyst used</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.97</td>
<td>160</td>
<td>Translucent</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>High tear resistance</td>
<td>ELASTOSIL®</td>
<td>RT 620</td>
<td>RTV-2 / platinum cure (A/B 10:1)</td>
<td>X</td>
<td>Excellent mechanical properties</td>
<td>8,000</td>
<td>35 min</td>
<td>17</td>
<td>5.0</td>
<td>900</td>
<td>12</td>
<td>1.05</td>
<td>200</td>
<td>Transparent</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 622</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>X</td>
<td>Excellent mechanical properties</td>
<td>12,000</td>
<td>60 min</td>
<td>27</td>
<td>6.5</td>
<td>650</td>
<td>30</td>
<td>1.13</td>
<td>200</td>
<td>Reddish brown / gray</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 625</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>X</td>
<td>Excellent mechanical properties</td>
<td>10,000</td>
<td>30 min</td>
<td>7.5</td>
<td>500</td>
<td>700</td>
<td>30</td>
<td>1.22</td>
<td>200</td>
<td>Reddish brown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 629</td>
<td>RTV-2 / platinum cure (A/B 10:1)</td>
<td>Antistatic</td>
<td>8,000</td>
<td>40 min</td>
<td>31</td>
<td>6.0</td>
<td>500</td>
<td>25</td>
<td>1.13</td>
<td>180</td>
<td>Turquoise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 646</td>
<td>RTV-2 / platinum cure (A/B 10:1)</td>
<td>Good chemical resistance</td>
<td>X</td>
<td>70,000</td>
<td>80 min</td>
<td>53</td>
<td>5.0</td>
<td>280</td>
<td>12</td>
<td>1.28</td>
<td>180</td>
<td>Beige</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 720</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>X</td>
<td>Soft gel</td>
<td>35</td>
<td>40</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>1.10</td>
<td>180</td>
<td>Gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 436</td>
<td>RTV-2 / condensation cure (Base + Catalyst 100:3)*</td>
<td>Alcohol</td>
<td>Thermally conductive</td>
<td>15,000</td>
<td>90 min</td>
<td>60</td>
<td>4.5</td>
<td>120</td>
<td>4</td>
<td>1.44</td>
<td>200</td>
<td>Reddish brown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 428</td>
<td>RTV-2 / condensation cure (Base + Catalyst 100:3)*</td>
<td>Alcohol</td>
<td>Thermally conductive</td>
<td>12,000</td>
<td>100 min</td>
<td>65</td>
<td>6.0</td>
<td>50</td>
<td>5</td>
<td>1.53</td>
<td>200</td>
<td>Reddish brown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 602</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>X</td>
<td>X</td>
<td>3,500</td>
<td>80 min</td>
<td>30</td>
<td>1.5</td>
<td>130</td>
<td>1.17</td>
<td>200</td>
<td>Light gray</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 607</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>X</td>
<td>X</td>
<td>12,000</td>
<td>80 min</td>
<td>55</td>
<td>3.0</td>
<td>100</td>
<td>1.43</td>
<td>210</td>
<td>Reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 619</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>X</td>
<td>Flame retardant</td>
<td>9,500</td>
<td>60 min</td>
<td>55</td>
<td>3.9</td>
<td>120</td>
<td>1.42</td>
<td>230</td>
<td>Reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 675</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>X</td>
<td>X</td>
<td>50,000</td>
<td>150 min</td>
<td>80</td>
<td>2.0</td>
<td>20</td>
<td>2.30</td>
<td>180</td>
<td>Reddish brown</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 658</td>
<td>RTV-2 / platinum cure (A/B 9:1)</td>
<td>X</td>
<td>X</td>
<td>40,000</td>
<td>60 h</td>
<td>40</td>
<td>4.0</td>
<td>250</td>
<td>6</td>
<td>1.10</td>
<td>200</td>
<td>Cream white</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 772</td>
<td>RTV-2 / condensation cure (Base + Catalyst 10:1)**</td>
<td>Alcohol</td>
<td>X</td>
<td>37,000</td>
<td>5 min / 10 min ***</td>
<td>35</td>
<td>2.2</td>
<td>200</td>
<td>1.26</td>
<td>230</td>
<td>Black</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 706</td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>X</td>
<td>12,000</td>
<td>6 months</td>
<td>30</td>
<td>2.5</td>
<td>200</td>
<td>1.23</td>
<td>210</td>
<td>Red</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ELASTOSIL®</td>
<td>RT 707 W</td>
<td>1-component heat-curing / platinum cure</td>
<td>X</td>
<td>X</td>
<td>60,000</td>
<td>6 months</td>
<td>42</td>
<td>3.3</td>
<td>270</td>
<td>1.18</td>
<td>230</td>
<td>White</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEMICOSIL®</td>
<td>900 LT</td>
<td>RTV-2 / platinum cure (A/B 1:1)</td>
<td>Soft gel</td>
<td>X</td>
<td>13,000</td>
<td>2 h</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.00</td>
<td>160</td>
<td>Translucent</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* grade can be transformed into a self-adhesive silicon elastomer when cured with WACKER® Catalyst T 77 or WACKER® Catalyst T 77 PLUS. In a mixing ratio of 1:1. (for details, please see the technical data sheets for WACKER® Catalyst T 77 and T 77 PLUS)
* base component to be combined with ELASTOSIL® CAT PT, ELASTOSIL® CAT PT-F or ELASTOSIL® CAT UV to allow curing at room temperature, under heat or by UV light. (please see the corresponding technical data sheet for details)
** base component to be combined with WACKER® Catalyst T 77 or WACKER® Catalyst T 77 PLUS.

ELASTOSIL®, SEMICOSIL® and WACKER SIgre® are registered trademarks of Wacker Chemie AG.
The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies' raw materials are also being used.

The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties' rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.
**SILICONES FOR WOUND CARE**

- **SILPURAN® Silicones for Advanced Wound Care**
- **SILPURAN® Silicones for Traditional Wound Care and Medical Tape**
- **SILPURAN® Silicones for Stoma Care**
- **SILPURAN® Silicones for Scar Treatment**

All figures are intended as a guide and should not be used in preparing specifications.

| Brand/Product | Mixing ratio A:B | Viscosity A [mPa·s] | Viscosity B [mPa·s] | Penetration, hollow cone at 23 °C [1/10 mm] | Shore A [°] | Tear strength [N/2.5 cm] | Elongation at break [%] | Potlife at 23 °C [min] | Storage stability at 25 °C (% | Adhesive strength ** [N/2.5 cm]\* | ISO 868 Final Shore A | ISO 37 Tensile strength [N/mm²] | ISO 37 Elongation at break [%] | Shrinkage [%] |
|---------------|------------------|---------------------|---------------------|------------------------------------------|------------|--------------------------|------------------------|-------------------------|--------------------------------|----------------------|-----------------------------|-----------------------------|-----------------------|
| ELASTOSIL® RTV-2 Silicone Rubber Grades for Orthopedics and Prosthetics | | | | | | | | | | | | | | | |
| Brand/Product | Mixing ratio A:B | Viscosity A [mPa·s] | Viscosity B [mPa·s] | Penetration, hollow cone at 23 °C [1/10 mm] | Shore A [°] | Tear strength [N/2.5 cm] | Elongation at break [%] | Potlife at 23 °C [min] | Storage stability at 25 °C (% | Adhesive strength ** [N/2.5 cm]\* | ISO 868 Final Shore A | ISO 37 Tensile strength [N/mm²] | ISO 37 Elongation at break [%] | Shrinkage [%] |
| SILPURAN® RTV-2 Silicone Rubber Grades for Orthopedics and Prosthetics (WACKER Clean Room Quality) | | | | | | | | | | | | | | | | |
PRODUCT OVERVIEW

MOLD MAKING: FORM HAS NO LIMITS

ELASTOSIL® M, C and RT High-Quality Silicone Rubber

The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies’ raw materials are also being used.

The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties’ rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.
## PRODUCT TO PROPERTY

### Addition Curing

<table>
<thead>
<tr>
<th>Brand</th>
<th>Product Code</th>
<th>Brand</th>
<th>Product</th>
<th>Catalyst</th>
<th>A : B</th>
<th>Mixing ratio (part)</th>
<th>Viscosity A (pre mix)</th>
<th>Viscosity B (pre mix)</th>
<th>Hardness</th>
<th>Resin conversion (°C)</th>
<th>Tensile strength</th>
<th>Elongation at break</th>
<th>Moisture resistance</th>
<th>Color (cured)</th>
<th>Potlife</th>
<th>Vulcanization time</th>
<th>Tensile tear</th>
<th>Tear resistance</th>
<th>Specific gravity (cured)</th>
<th>Specific gravity (uncured)</th>
<th>Viscosity [mPa·s]</th>
<th>Tensile strength</th>
<th>Elongation at break</th>
<th>Hardness</th>
<th>Temperature</th>
<th>Internal heat shrinkage</th>
<th>Potlife</th>
<th>Vulcanization time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELASTOSIL® M 4503</td>
<td>T 35</td>
<td>45%</td>
<td>5%</td>
<td>45,000</td>
<td>40,000</td>
<td>25</td>
<td>350</td>
<td>5</td>
<td>&gt; 20</td>
<td>1.16</td>
<td>90</td>
<td>15</td>
<td>20</td>
<td>Reproduction</td>
<td>1.16</td>
<td>White</td>
<td>90</td>
<td>15</td>
<td>- 20</td>
<td>Reproduction</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ELASTOSIL® M 4514</td>
<td>T 21 / T 51</td>
<td>5% / 5%</td>
<td>35,000</td>
<td>25,000</td>
<td>25</td>
<td>450</td>
<td>4.5</td>
<td>&gt; 25</td>
<td>1.25</td>
<td>White</td>
<td>60 - 90</td>
<td>8 - 10</td>
<td>Reproduction, automotive</td>
<td>1.25</td>
<td>White</td>
<td>60 - 90</td>
<td>8 - 10</td>
<td>35,000</td>
<td>25,000</td>
<td>25</td>
<td>450</td>
<td>4.5</td>
<td>&gt; 25</td>
<td>1.25</td>
<td>White</td>
<td>60 - 90</td>
<td>8 - 10</td>
<td>Reproduction, automotive</td>
</tr>
<tr>
<td>ELASTOSIL® M 4512</td>
<td>T 21 / T 51</td>
<td>5% / 5%</td>
<td>30,000</td>
<td>25,000</td>
<td>20</td>
<td>500</td>
<td>3.5</td>
<td>&gt; 24</td>
<td>1.19</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>Reproduction</td>
<td>1.19</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>30,000</td>
<td>25,000</td>
<td>20</td>
<td>500</td>
<td>3.5</td>
<td>&gt; 24</td>
<td>1.19</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>Reproduction</td>
</tr>
<tr>
<td>ELASTOSIL® M 4470</td>
<td>T 37 / T 40</td>
<td>3% / 2%</td>
<td>15,000</td>
<td>10,000</td>
<td>60</td>
<td>120</td>
<td>4.5</td>
<td>&gt; 4</td>
<td>1.44</td>
<td>Reddish brown</td>
<td>90 / 40</td>
<td>20 - 24 / 3 - 4</td>
<td>Low melting metals</td>
<td>1.44</td>
<td>Reddish brown</td>
<td>90 / 40</td>
<td>20 - 24 / 3 - 4</td>
<td>15,000</td>
<td>10,000</td>
<td>60</td>
<td>120</td>
<td>4.5</td>
<td>&gt; 4</td>
<td>1.44</td>
<td>Reddish brown</td>
<td>90 / 40</td>
<td>20 - 24 / 3 - 4</td>
<td>Low melting metals</td>
</tr>
<tr>
<td>ELASTOSIL® M 4400</td>
<td>T 37 / T 40</td>
<td>3% / 2%</td>
<td>30,000</td>
<td>25,000</td>
<td>23</td>
<td>250</td>
<td>2</td>
<td>&gt; 3</td>
<td>1.30</td>
<td>Yellow</td>
<td>90 / 40</td>
<td>9 - 12 / 5 - 7</td>
<td>Reproduction</td>
<td>1.30</td>
<td>Yellow</td>
<td>90 / 40</td>
<td>9 - 12 / 5 - 7</td>
<td>30,000</td>
<td>25,000</td>
<td>23</td>
<td>250</td>
<td>2</td>
<td>&gt; 3</td>
<td>1.30</td>
<td>Yellow</td>
<td>90 / 40</td>
<td>9 - 12 / 5 - 7</td>
<td>Reproduction</td>
</tr>
<tr>
<td>ELASTOSIL® M 1470 Paste</td>
<td>T 40</td>
<td>2%</td>
<td>Kneadable</td>
<td>Kneadable</td>
<td>45</td>
<td>230</td>
<td>4.5</td>
<td>&gt; 10</td>
<td>1.28</td>
<td>Pink</td>
<td>70</td>
<td>4 - 5</td>
<td>Reproduction</td>
<td>1.28</td>
<td>Pink</td>
<td>70</td>
<td>4 - 5</td>
<td>45</td>
<td>230</td>
<td>4.5</td>
<td>&gt; 10</td>
<td>1.28</td>
<td>Pink</td>
<td>70</td>
<td>4 - 5</td>
<td>Reproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT 402</td>
<td>T 12</td>
<td>3%</td>
<td>15,000</td>
<td>13,000</td>
<td>11</td>
<td>350</td>
<td>2</td>
<td>&gt; 3</td>
<td>1.28</td>
<td>Gray</td>
<td>75</td>
<td>10</td>
<td>Reproduction</td>
<td>1.28</td>
<td>Gray</td>
<td>75</td>
<td>10</td>
<td>15,000</td>
<td>13,000</td>
<td>11</td>
<td>350</td>
<td>2</td>
<td>&gt; 3</td>
<td>1.28</td>
<td>Gray</td>
<td>75</td>
<td>10</td>
<td>Reproduction</td>
</tr>
</tbody>
</table>

### Condensation Curing

<table>
<thead>
<tr>
<th>Brand</th>
<th>Product Code</th>
<th>Brand</th>
<th>Product</th>
<th>Catalyst</th>
<th>Mixing ratio (part)</th>
<th>Viscosity A (pre mix)</th>
<th>Viscosity B (pre mix)</th>
<th>Hardness</th>
<th>Resin conversion (°C)</th>
<th>Tensile strength</th>
<th>Elongation at break</th>
<th>Moisture resistance</th>
<th>Color (cured)</th>
<th>Potlife</th>
<th>Vulcanization time</th>
<th>Tensile tear</th>
<th>Tear resistance</th>
<th>Specific gravity (cured)</th>
<th>Specific gravity (uncured)</th>
<th>Viscosity [mPa·s]</th>
<th>Tensile strength</th>
<th>Elongation at break</th>
<th>Hardness</th>
<th>Temperature</th>
<th>Internal heat shrinkage</th>
<th>Potlife</th>
<th>Vulcanization time</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELASTOSIL® M 4645</td>
<td>B 10:1</td>
<td>25%</td>
<td>75%</td>
<td>10,000</td>
<td>7,000</td>
<td>17</td>
<td>50</td>
<td>1.85</td>
<td>Translucent</td>
<td>90</td>
<td>10</td>
<td>Reproduction</td>
<td>1.85</td>
<td>Translucent</td>
<td>90</td>
<td>10</td>
<td>10,000</td>
<td>7,000</td>
<td>17</td>
<td>50</td>
<td>1.85</td>
<td>Translucent</td>
<td>90</td>
<td>10</td>
<td>Reproduction</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RT 629</td>
<td>B 10:1</td>
<td>10%</td>
<td>90%</td>
<td>13,000</td>
<td>10,000</td>
<td>20</td>
<td>200</td>
<td>4.5</td>
<td>&gt; 30</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>Reproduction, automotive</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>13,000</td>
<td>10,000</td>
<td>20</td>
<td>200</td>
<td>4.5</td>
<td>&gt; 30</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
</tr>
<tr>
<td>RT 623</td>
<td>B 10:1</td>
<td>10%</td>
<td>90%</td>
<td>13,000</td>
<td>10,000</td>
<td>20</td>
<td>200</td>
<td>4.5</td>
<td>&gt; 30</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>Reproduction, automotive</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>13,000</td>
<td>10,000</td>
<td>20</td>
<td>200</td>
<td>4.5</td>
<td>&gt; 30</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
</tr>
<tr>
<td>RT 620</td>
<td>B 10:1</td>
<td>10%</td>
<td>90%</td>
<td>13,000</td>
<td>10,000</td>
<td>20</td>
<td>200</td>
<td>4.5</td>
<td>&gt; 30</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>Reproduction, automotive</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
<td>5 - 20</td>
<td>13,000</td>
<td>10,000</td>
<td>20</td>
<td>200</td>
<td>4.5</td>
<td>&gt; 30</td>
<td>1.98</td>
<td>White</td>
<td>90 - 120</td>
</tr>
<tr>
<td>RT 602</td>
<td>T 12</td>
<td>3%</td>
<td>15,000</td>
<td>13,000</td>
<td>11</td>
<td>350</td>
<td>2</td>
<td>&gt; 3</td>
<td>1.28</td>
<td>Gray</td>
<td>75</td>
<td>10</td>
<td>Reproduction</td>
<td>1.28</td>
<td>Gray</td>
<td>75</td>
<td>10</td>
<td>15,000</td>
<td>13,000</td>
<td>11</td>
<td>350</td>
<td>2</td>
<td>&gt; 3</td>
<td>1.28</td>
<td>Gray</td>
<td>75</td>
<td>10</td>
</tr>
</tbody>
</table>

**Note:** The data are only intended as a guide and should not be used in preparing specifications.
ELASTOSIL® COLOR PASTE FL

<table>
<thead>
<tr>
<th>Standard colors</th>
<th>Similar to RAL</th>
<th>BfR</th>
<th>FDA</th>
<th>Conditions of use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yellow</td>
<td>RAL 1016</td>
<td>●</td>
<td>●</td>
<td>Use B-H**</td>
</tr>
<tr>
<td>Red iron oxide</td>
<td>RAL 3013</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>RAL 5022</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>White</td>
<td>RAL 9010</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Deep black</td>
<td>RAL 9011</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>RAL 1006</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Ivory</td>
<td>RAL 1014</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>RAL 1021</td>
<td>●</td>
<td>●</td>
<td>Use B-H**</td>
</tr>
<tr>
<td>Yellow</td>
<td>RAL 1026</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Yellow</td>
<td>RAL 1026 F</td>
<td>●</td>
<td>●</td>
<td>Use C-H**</td>
</tr>
<tr>
<td>Yellow</td>
<td>RAL 1033</td>
<td>●</td>
<td>●</td>
<td>Use B-H**</td>
</tr>
<tr>
<td>Red-brown</td>
<td>RAL 2001</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>RAL 2004</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Orange</td>
<td>RAL 2004 F</td>
<td>●</td>
<td>●</td>
<td>Use B-H**</td>
</tr>
<tr>
<td>Dark red</td>
<td>RAL 3000</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Red</td>
<td>RAL 3020</td>
<td>●</td>
<td>●</td>
<td>Use B-H**</td>
</tr>
<tr>
<td>Red violet</td>
<td>RAL 4002</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Blue</td>
<td>RAL 5002</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Dark blue</td>
<td>RAL 5010</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Light blue</td>
<td>RAL 5015</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Light blue</td>
<td>RAL 5015 F</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Heliogreen</td>
<td>RAL 6004</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Green</td>
<td>RAL 6010</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Gray</td>
<td>RAL 7000</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Deep black</td>
<td>RAL 9005</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Black</td>
<td>RAL 9005 F</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>UV fluorescent</td>
<td>n.a.</td>
<td>●</td>
<td>●</td>
<td></td>
</tr>
</tbody>
</table>

- Complies with the requirements of BfR Recommendation IX on Pigments for coloring plastics* and of FDA regulation CFR 21 § 177.2600 “Rubber Articles Intended for Repeated Use” when the maximum quantity limits are respected.
- The RAL values shown in the table are only intended as a guide and should not be used in preparing specifications.
- Refer to 21 CFR §176.170 (c) (4-1-05 Edition), www.fda.gov

1) maximum quantity: 1 weight-%
2) maximum quantity: 3 weight-%
3) maximum quantity: 4 weight-%
4) maximum quantity: 5 weight-%
5) maximum quantity: 10 weight-%

The ELASTOSIL® COLOR PASTE FL products show temperature resistance of at least 42 d / 175 °C or 21 d / 200 °C and UV-resistance for at least 21 d (continuous exposure in UV weathering chamber).

ELASTOSIL® is a registered trademark of Wacker Chemie AG.

Wacker Chemie AG
Hanns-Seidel-Platz 4, D-81737 München

The data presented in this medium are in accordance with the present state of our knowledge but do not oblige the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies’ raw materials are also being used. The information provided by us does not oblige the user from the obligation of investigating the possibility of infringement of third parties’ rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.
The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies’ raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties’ rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.