HIGH-PERFORMANCE SILICONES FOR TRANSMISSION AND DISTRIBUTION
WACKER SILICONES
STAND FOR OPERATIONAL SAFETY
AND DURABILITY

Thanks to their molecular structure, silicones are the perfect solution for insulating applications in the transmission and distribution sector. For example, silicone composite insulators covered with pollution layers have much lower leakage currents than insulators made of porcelain, glass or EPDM. This prevents pollution flashovers, even if the surface is extremely dirty.

However, not only insulators profit from silicones. Nowadays, silicone insulating materials are used in medium- and high-voltage applications wherever high operational safety and long service lives are required, for example, silicone fluid in transformers or silicone elastomer terminations of high-voltage cables.

60 Years of Research to Ensure Reliable Transmission Networks
WACKER has been continuously researching new silicone products for more than six decades. The key focus used to be on the formulation itself, but now additional issues relating to production economics and environmental protection have moved to the forefront. WACKER meets these stricter requirements with continuous developments and innovations.

Leading Manufacturer of Silicones for Transmission and Distribution Applications
With the POWERSIL® products, WACKER was the first silicone manufacturer to offer its customers a complete range of insulating and electrically conductive silicone rubber grades for medium- and high-voltage applications. Silicone products from WACKER have been used to make generations of insulators and other insulating components.

Global Production – Local Customer Support
The silicones that WACKER manufactures at its various production sites worldwide meet identical quality standards.
What's more, we have set up technical centers across the globe to offer wide ranging support for product selection, manufacturing, and end-product specification. For more information, visit: www.wacker.com

POWERSIL® and ELASTOSIL® are registered trademarks of Wacker Chemie AG.
CONTENTS

Chapter 1: WACKER Silicones Page 7
1.1 Properties of Silicones
1.2 Silicone Product Groups
1.3 Typical Applications for Silicones
1.4 Our Philosophy

Chapter 2: Insulators / Insulator Coatings Page 19
2.1 Long-Rod Insulators / Surge Arresters
2.2 Hollow-Core Insulators
2.3 Insulator Coatings

Chapter 3: Cable Accessories Page 27
3.1 Cable Accessories
3.2 Field Grading with Cable Accessories
3.3 Cable Accessories: Silicone Products with Specifications

Chapter 4: Insulating Materials Page 37
4.1 Silicone Fluids
4.2 Silicone Gels

Chapter 5: Auxiliary Materials Page 41
5.1 Adhesion Promoters / Insulator Finish / Adhesives / Mold Release Agents
5.2 Sliding and Filling Pastes

Chapter 6: Processing Technologies Page 45
6.1 Injection Molding
6.2 Low-Pressure Mold Filling
6.3 Extrusion
6.4 Crosslinking of Extrudates

Innovations Page 51

WACKER at a Glance Page 52
CHAPTER 1:
WACKER SILICONES

Contents

1.1 Properties of Silicones Page 8
 General characteristics of silicones, the role of their molecular structure, and the key properties for individual applications.

1.2 Silicone Product Groups Page 12
 Properties of the individual silicone product groups (elastomers, gels and fluids).

1.3 Typical Applications for Silicones Page 14
 Typical applications for silicones, their key properties and their advantages over conventional insulating materials.

1.4 Our Philosophy Page 16
 The high standards that WACKER products must meet; how customers benefit.
1.1 PROPERTIES OF SILICONES

Thanks to their chemical structure, silicones are extremely suitable for applications in the transmission and distribution sector. They have an impressive spectrum of electrical, physical, mechanical and chemical properties.

Hydrophobicity
Compared to other materials, silicones exhibit very good, long-lasting water-repellency, also known as hydrophobicity. Insulating components made of silicone rubber compounds still repel water after many years. The leakage current is minimized and thus pollution flashover is prevented. This also applies to very dirty surfaces, because the water-repelling effect is transferred to the pollution layer. This is known as hydrophobicity transfer. Such an effect can also be achieved by treating glass and porcelain insulators with a silicone coating, making repeated cleaning processes unnecessary.

Resistance to UV Radiation and Weathering
Compared to other materials, silicone elastomers are particularly resistant to UV radiation. Even harsh weather conditions, as found in coastal regions or deserts, have little effect on their properties. Typically silicones show only slight changes of mechanical and hydrophobic properties, even after extended accelerated weathering tests of more than 3,000 hours.

Low Flammability
Silicones only ignite at very high temperatures. This makes them particularly safe in operation. Even if they did ever catch fire, they would not produce any toxic gases. This is why they are the ideal choice for applications subject to strict fire safety requirements, for example in subways and high-rise buildings.

Elasticity
Silicone insulating materials are extremely elastic. This facilitates installation and makes for novel installation techniques, e.g. cold shrinking on cables.

Dielectric Properties
Silicones have high electrical resistivity and a low dielectric loss factor. They exhibit extremely low electrical aging compared to other insulating materials.

Temperature Stability
Owing to their chemical structure, silicones have particularly high thermal stability. Another benefit of silicones is their high temperature resistance. For example, silicones maintain their elasticity down to -45 °C, which makes them particularly suitable for use at high altitudes and in polar regions.
1.1 PROPERTIES OF SILICONES

PROPERTIES AT A GLANCE

WACKER SILICONES

<table>
<thead>
<tr>
<th>Property</th>
<th>Advantages for Transmission and Distribution Technology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Water Repellency (Hydrophobicity)</td>
<td>Minimizes the risk of pollution flashovers in the case of dirty surfaces and thus provides considerably greater safety compared to conventional insulating materials.</td>
</tr>
<tr>
<td>Resistance to UV Radiation</td>
<td>Ideally suited to outdoor applications.</td>
</tr>
<tr>
<td>Low Flammability</td>
<td>Perfect suitability for use in locations with strict fire safety requirements, e.g. in high-rise buildings, locomotives, ships, hospitals and subways.</td>
</tr>
<tr>
<td>Elasticity</td>
<td>The components can be installed at low temperatures. No loss of elasticity during long-term use at very high or very low temperatures.</td>
</tr>
<tr>
<td>Dielectric Properties</td>
<td>Significantly slower electrical aging and thus a significantly longer service life than other insulating materials under the same conditions.</td>
</tr>
<tr>
<td>Stability at High Temperature</td>
<td>They can operate at higher temperatures than other insulating materials, allowing better utilization of transformer capacity.</td>
</tr>
</tbody>
</table>
1.1 PROPERTIES OF SILICONES

KEY PROPERTIES

Silicone insulating components have been used in transmission networks for more than 60 years. For each new application, silicones were chosen as the insulating material for a variety of reasons.

Key Properties for Electrical Applications

Over the last 60 years, silicones have gained acceptance in many fields of the transmission and distribution industry. Although silicones already offered attractive properties, each new application also required a specific key property. In the case of insulator coatings, the original focus was solely on the water-repelling effect of the silicones. In subsequently developed insulators, the high UV resistance of silicone elastomers was an additional advantage. The key properties for individual applications have remained largely the same. One exception is transformer fluids. Originally, the main focus was on their low flammability, but now the emphasis is on their temperature resistance.

<table>
<thead>
<tr>
<th>Property Relevance with Regard to the Applications</th>
<th>Hydrophobicity</th>
<th>Resistance to UV Radiation</th>
<th>Processing Properties of Low-Viscosity Silicone Elastomers</th>
<th>Low Flammability</th>
<th>Permanent Elasticity</th>
<th>Dielectric Properties</th>
<th>Temperature Resistance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silicone fluids for modern transformers</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable joints</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable terminations</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td>●</td>
<td></td>
</tr>
<tr>
<td>Arresters</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite hollow-core insulators</td>
<td>●</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Composite long-rod insulators</td>
<td>●</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulator coatings</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

● = Key property ● = Further important property
1.1 PROPERTIES OF SILICONES

MOLECULAR STRUCTURE
OF SILICONES

The excellent stability and high formulation flexibility of silicones arise from the basic chemical structure. This is the major advantage of silicones, and the reason why they are superior to other materials.

Exceptional Stability
Silicones, called polyorganosilioxanes by chemists, have a similar structure to organically modified quartz. They consist of a backbone comprising alternating silicon and oxygen atoms. The high bonding energy of the silicon-oxygen backbone (Si-O) gives silicones a high stability. Thus silicones are more stable than polymers with a carbon (C-C) backbone, such as EPDM. The energy of C-C bonds is 348 kJ/mol, as opposed to 444 kJ/mol for Si-O bonds. Shortwave sunlight (300 nm) has an energy content of about 6.2×10^{-22} kJ (= 398 kJ/mol) and can therefore cleave C-C bonds, whereas the Si-O bond remains stable.

Tailored to Your Electrical Application
WACKER specialists have more than 60 years of experience with silicone insulating materials for transmission networks. They develop silicones tailored to meet your application and processing technology requirements as well as local guidelines. Please contact your WACKER specialist.

The silicon-oxygen backbone makes silicones very stable.
1.2 SILICONE PRODUCT GROUPS

Elastomers
Silicone elastomers and silicone coatings are the most important group of silicone products in the transmission and distribution sector. Owing to the wide range of potential applications, they are continually undergoing development.

Silicone polymers are the raw materials for manufacturing silicone elastomers. Elastomers differ with respect to their viscosity and curing system. Whereas insulating components used to be made of RTV-2 silicone rubbers by casting, nowadays, there is a trend toward new technologies.

Silicone Gels
Silicone gels are a special group of insulating materials. They can replace liquids or elastomers, depending on the application. Silicone gels pose less risk of leakages than fluids.

Silicone gels can fill hollow spaces perfectly, even those with a complicated shape. They adhere excellently to the interior walls of components. Silicone gels are usually low-viscosity, 2-component products. By using special fillers, it is possible to produce compressible and modified gels.

Silicone Fluids
Silicone fluids have proven to be excellent coolants and insulating materials in modern transformers. Owing to their outstanding temperature resistance, it can be expected that new applications to meet similarly strict demands will emerge. A further important application field for silicone fluids is high-voltage cable accessories.

Silicone fluids are linear polymers with a chain length ranging from two to well over 1,000 Si atoms. The silicon atoms alternate with bridging oxygen atoms.
Overview of Silicone Rubbers

<table>
<thead>
<tr>
<th>Silicone Rubber</th>
<th>Typical Mixing Ratio</th>
<th>Silicone Product Family</th>
<th>Processing</th>
<th>Properties</th>
</tr>
</thead>
</table>
| Low-viscosity, 2-component rubber | 9:1 | RTV-2 | Low-pressure mold filling (casting) | • Good electrical properties
• Good mechanical properties
• Simple production technologies |
| Low-viscosity, 2-component liquid rubber | 1:1 | POWERSIL® XLR® | Low-pressure mold filling with mixing and dosing equipment | • Ideal combination of electrical and mechanical properties
• Potential for further developments in processing machinery |
| 2-component liquid rubber | 1:1 | LSR | Injection molding | • Excellent mechanical properties
• Extensive product range available, including, for example, grades modified to be electrically conductive and grades for outdoor applications
• Potential for new developments and modifications |
| Solid rubber, 1-component | | HCR | Injection molding | • Wide product range for various processing technologies, such as injection molding and extrusion
• Grades modified to be electrically conductive and grades for outdoor applications
• Wide variety of modification options with respect to the curing process, color, and other properties |
| 1-component solution or emulsion coating | | RTV-1 | Spraying, painting, dipping | • Provides hydrophobicity and UV-resistance of the coated layer
• Adhesion to many substrates |

RTV = Room-Temperature-Curing (Vulcanizing)
POWERSIL® XLR® = Extra Liquid Rubber
LSR = Liquid Silicone Rubber
HCR = High Consistency Rubber
1.3 Typical Applications for Silicones

<table>
<thead>
<tr>
<th>Application</th>
<th>Silicone Product Family</th>
<th>Key Property</th>
<th>Benefits Compared to Conventional Insulating Materials</th>
</tr>
</thead>
</table>
| Coating of insulators (and other insulating components) | RTV-1 | Hydrophobicity | • Low leakage current
 • Higher pollution-flashover voltage
 • Lower maintenance costs
 • Longer service life |
| Long-rod composite insulators with a silicone elastomer sheath | HCR, RTV-2, LSR | Resistance to UV radiation | • Low leakage current
 • Higher pollution-flashover voltage
 • Lower maintenance costs
 • Longer service life |
| Composite hollow-core insulators with a silicone elastomer sheath | HCR, RTV-2, LSR | Resistance to UV radiation + processing properties | • Low leakage current
 • Higher pollution-flashover voltage
 • Lower maintenance costs
 • Longer service life |
| Surge arresters | HCR, RTV-2, LSR | Reliability with respect to overloading and low flammability | • Greater safety |
| Cable terminations | HCR, RTV-2, LSR | Permanent elasticity | • Longer service life
 • Lower or no maintenance costs |
| Cable joints | HCR, RTV-2, LSR | Stability of the important electrical and mechanical properties in the temperature range of the applications | • Longer service life,
 • Lower or no maintenance costs |
| Applications for silicone gels | Silicone gels | Leakage protection and interface behavior | • Greater environmental safety |
| Transformer fluid | Silicone fluids | Thermal resistance and low flammability | • Highest flame resistance |
We’ll gladly share our research results with you. Whether providing advice on process engineering or helping you to create new applications – your WACKER customer advisor looks forward to working with you.

Benefit from WACKER’s Silicone Experts and Their Know-How
We’ll gladly share our research results with you. Whether providing advice on process engineering or helping you to create new applications – your WACKER customer advisor looks forward to working with you.

WACKER Technical Centers
Across the globe, our state-of-the-art technical centers are focused on finding the best solution for each customer – whether they need product modifications or optimized formulations, have questions about processing, or need help with tests to comply with particular standards.

Diverse Test Procedures
WACKER has laboratories around the globe that can test silicone elastomers according to current standard test procedures. WACKER provides comprehensive application engineering and research resources for the development of new test procedures.

Recently, WACKER silicone specialists participated in the development of several new test procedures, including methods of assessing hydrophobicity and of investigating and evaluating the stability of the electrical conductivity of carbon-black-filled silicone elastomers. Another new field of research relates to methods of evaluating the electrical strength of silicone elastomers.

Local presence is already reality at WACKER. Over the decades, we have developed many silicone products in close cooperation with our customers.

Tailored Silicone Products
Specialists at WACKER develop solutions tailored to market requirements. We focus on
- Optimizing mechanical and electrical properties, such as tracking and erosion resistance
- Optimizing products for customers’ manufacturing processes
- Compliance with international standards

1.4 OUR PHILOSOPHY:
MORE LOCAL PRESENCE, HIGHER QUALITY
At the WACKER ACADEMY, we share our more than 80 years of market experience with you, from basic chemistry to regionally tailored training courses on applications, and innovation workshops – we provide a platform that promotes networking and allows people to showcase their skills.

Participation in International Committees
Specialists from WACKER participate in many international committees and working groups. These include the Deutsche Elektrotechnische Kommission (DKE), the Conseil International des Grands Réseaux Électriques (CIGRE), and the International Electrotechnical Commission (IEC). Wherever possible, WACKER is active in standardization committees in the interests of its customers.

Utilization of the Latest Research Findings
Our own silicone research department at WACKER provides customers with access to the latest scientific findings and technologies.

Globally Certified Manufacturing Processes
The manufacture of WACKER silicone products is regulated by globally certified processes. This guarantees the processing company a continuously consistent quality.

WACKER Technical Center
Our Technical Center (Technikum) offers modern production facilities suitable for both extrusion and injection molding, where we can test prototypes and new products. Plus, we will advise you at your premises.

WACKER ACADEMY
At the WACKER ACADEMY, we share our more than 80 years of market experience with you, from basic chemistry to regionally tailored training courses on applications, and innovation workshops – we provide a platform that promotes networking and allows people to showcase their skills.
CHAPTER 2: INSULATORS / INSULATOR COATINGS

Contents

2.1 Long-Rod Insulators / Surge Arresters Page 20
How silicones benefit long-rod insulators and surge arresters; the factors important to production.

2.2 Hollow-Core Insulators Page 22
Why silicones are preferred for hollow-core insulators; suitable production processes and silicone grades.

2.3 Silicone Coatings for Insulators Page 24
Why the silicone-coating method is important to cost-efficient insulator maintenance; suitable silicone grades.
Silicone long-rod insulators are used from 10 kV to 1,000 kV, for example as suspension and tension insulators or post and railway insulators.

Advantages of Using Silicones in Long-Rod Insulators

Silicones have been used in long-rod insulators for more than 60 years on account of their high weathering resistance and good tracking and erosion resistance. Further advantages include:

- **Long service life**

 POWERSIL® silicone rubbers have excellent hydrophobic properties and outstanding resistance to temperature, UV radiation and ozone.

- **Low weight**

 Long-rod insulators weigh up to 80 percent less than conventional porcelain and glass insulators. This facilitates installation in challenging locations, for example in mountainous regions.

- **Good impact and shock resistance**

 The flexibility of silicone insulating materials reduces the risk of breakage during transport and installation. Failure as the result of vandalism is rare.

- **High flashover resistance at high pollution**

 The surface hydrophobicity of silicones provides long-lasting protection against leakage currents and flashovers, even if the surface is very dirty. In such situations, this increases the reliability of the power supply, for example in industrial, coastal and desert regions and for railways.

- **Low maintenance costs**

 Due to the transfer of hydrophobic properties, the water-repelling effect is maintained even if the surface is dirty, which means that the insulators do not need regular cleaning.
Composite GRP silicone elastomer long-rod insulator: the insulating materials' beneficial properties complement each other perfectly in a lightweight, durable and thus environmentally sound product.

Design Principle of a Long-Rod Insulator

- **Fitting**
- **Silicone housing**
- **Adhesion promoter**
- **Core of glass-fiber-reinforced plastic (GRP)**

Manufacture and Processing of Long-Rod Insulators

These insulating parts are produced by applying a silicone housing onto the glass-fiber-reinforced epoxy resin or the active part of the surge arrester.

- **Manufacturing process**
 - Injection molding, low-pressure mold filling (casting), modular “shed by shed” process
- **Grades**
 - The choice of product – POWERSIL® solid silicone rubber (HCR), extra-liquid systems (POWERSIL® XLR®) or LSR – depends on the manufacturing process.
2.2 HOLLOW-CORE INSULATORS

Hollow-core insulators are used for arresters, bushings, and instrument transformers at high voltages of up to 1,000 kV. State-of-the-art production processes permit diameters up to one meter in size, and lengths of several meters.

Advantages of Using Silicones in Hollow-Core Insulators

- **Reliable production process**
 The low-pressure molding process produces silicone hollow-core insulators with considerable reliability and flexibility, making products available on demand.

- **Good handling due to low weight**
 Hollow-core insulators are up to 80 percent lighter than conventional porcelain insulators. This facilitates transport and installation in challenging locations.

- **Good impact and shock resistance**
 The flexibility of silicone insulating materials reduces the risk of breakage during transport, installation and earthquakes.

- **High flashover resistance of polluted surfaces**
 The surface hydrophobicity of silicones provides long-lasting protection against tracking currents, and thus against flashovers, even if the surface is highly polluted and wet.

<table>
<thead>
<tr>
<th>Silicon Rubber for Insulators</th>
<th>Processing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulating HCR</td>
<td>Injection molding</td>
</tr>
<tr>
<td>Insulating HCR</td>
<td>Extrusion</td>
</tr>
<tr>
<td>Insulating LSR</td>
<td>Injection molding</td>
</tr>
<tr>
<td>Insulating LSR</td>
<td>Low-pressure mold filling</td>
</tr>
<tr>
<td>Insulating RTV-2</td>
<td>Low-pressure mold filling</td>
</tr>
<tr>
<td>Silicone Gel</td>
<td>Casting</td>
</tr>
</tbody>
</table>

22
Design Principle of a Hollow-Core Insulator

- Glass-fiber-reinforced resin tube
- Adhesion promoter
- Silicone housing
- Aluminum flange

Manufacture and Processing of Hollow-Core Insulators

Hollow-core insulators are made of glass-fiber-reinforced resin tubes that are housed using silicone rubber:

- **Manufacturing process**
 - Low-pressure filling of the mold (casting), extrusion

- **Grades**
 - The choice of product – POWERSIL® room-temperature-vulcanizing systems (RTV-2), low-viscosity LSR and POWERSIL® XLR® systems or a special solid silicone rubber (HCR) – depends on the manufacturing process.

<table>
<thead>
<tr>
<th>Material</th>
<th>Hardness Shore A</th>
<th>Elongation at Break [%]</th>
<th>Tear Strength [N/mm]</th>
<th>Tracking Resistance</th>
<th>Viscosity [mPa·s]</th>
<th>Shear Rate 10 s⁻¹</th>
<th>Volume Resistivity [Ωcm]</th>
<th>Density [g/cm³]</th>
<th>ISO 1183-1A</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWERSIL® 310</td>
<td>70</td>
<td>250</td>
<td>16</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>150,000</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® 3100</td>
<td>70</td>
<td>350</td>
<td>18</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>150,000</td>
<td>1.55</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® 3500</td>
<td>45</td>
<td>850</td>
<td>40</td>
<td>1 A 3.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>150,000</td>
<td>1.11</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® 190</td>
<td>75</td>
<td>300</td>
<td>20</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>150,000</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® 730</td>
<td>35</td>
<td>600</td>
<td>26</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>150,000</td>
<td>1.09</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® 735</td>
<td>39</td>
<td>500</td>
<td>30</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>13,000</td>
<td>1.08</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® XLR® 630</td>
<td>35</td>
<td>450</td>
<td>25</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>35,000</td>
<td>1.14</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® XLR® 640</td>
<td>40</td>
<td>400</td>
<td>20</td>
<td>1 A 4.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>10,000</td>
<td>1.15</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® 600</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
<td>1 A 3.5</td>
<td>–</td>
<td>>10¹⁴</td>
<td>1,000</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® Gel</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>>10¹⁴</td>
<td>1,000</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® Gel FC (fast cure)</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>>10¹⁴</td>
<td>1,000</td>
<td>0.97</td>
<td></td>
</tr>
<tr>
<td>POWERSIL® Gel C 670 (compressible)</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>–</td>
<td>>10¹⁴</td>
<td>4,000</td>
<td>0.70</td>
<td></td>
</tr>
</tbody>
</table>
2.3 SILICONE COATINGS FOR INSULATORS

The risk of conventional insulators failing increases with the rate of pollution. Insulators can be made operationally reliable again by applying a subsequent silicone coating.

Improved Electrical Properties
A pollution layer on insulators made of porcelain, glass, or epoxy resin can cause pollution flashovers. This hazard can be prevented by regular cleaning. However, a more cost-effective and long-term alternative is a hydrophobic silicone coating on the insulator.

A silicone coating improves the electrical properties, even on aged epoxy resin insulators, outdoor testing equipment and antenna systems. Some manufacturers of porcelain and glass insulators have recently started to promote the application of silicone coatings (also in the factory) to make their products water repellent.

Silicone Insulator Coatings from WACKER

<table>
<thead>
<tr>
<th>Silicone</th>
<th>Material</th>
<th>Color</th>
<th>Density (Cured) [g/cm³]</th>
<th>1,000 h Salt-Fog-Test acc. to IEC 62217</th>
</tr>
</thead>
<tbody>
<tr>
<td>RTV-1*</td>
<td>POWERSIL® 552</td>
<td>Dark gray</td>
<td>1.44</td>
<td>Successfully passed</td>
</tr>
<tr>
<td>RTV-1**</td>
<td>POWERSIL® 567</td>
<td>Light gray</td>
<td>1.10</td>
<td>Successfully passed</td>
</tr>
<tr>
<td>RTV-1**</td>
<td>POWERSIL® 577 PLUS</td>
<td>Light gray</td>
<td>1.10</td>
<td>Successfully passed</td>
</tr>
</tbody>
</table>

* Solvent-based solution
** Water-based emulsion, solvent-free

Silicone Coating as Turnkey Solution through WACKER Partners

Silicone coatings are usually sold as a complete turnkey solution package covering supply and application. WACKER works with experienced specialists who will provide both the materials and the coating services. Your WACKER consultant can give you further guidance in this respect.
Advantages of Silicone Coatings on Insulators

- **Higher operational reliability**
 Low leakage current measured in microamps is the norm due to the outstanding hydrophobic properties. Pollution flashovers can thus be avoided, even if the surface is very dirty or even wet.

- **Retrofitting of existing installations**
 Silicone coatings offer a cost-effective option for hydrophobic coating of insulators made of porcelain, glass, or epoxy resin. This saves the costs for periodic cleaning or for a replacement with composite insulators.

- **Longer service life**
 Silicone coatings lengthen the service life of existing installations, thus contributing to effective resource management. Experience has shown that the service life of silicone coatings is 15 years or more.

Processing of Silicone Coatings

POWERSIL® silicone coatings are delivered ready-to-use; however, before they are filled into the processing machine, they should be thoroughly stirred whilst still in their packaging. POWERSIL® insulator coatings are usually processed using so-called airless membrane equipment, as is used for high-quality paintwork. The surfaces being coated should be thoroughly cleaned beforehand to ensure good adhesion to the substrate.

The application of silicone coatings is as important as the coating itself and requires sophisticated, highly controlled procedures and expertise.
CHAPTER 3: CABLE ACCESSORIES

Contents

3.1 Cable Accessories
Why silicone cable accessories ensure permanently secure connections; which production processes are available.

Page 28

3.2 Field Grading with Cable Accessories
How to grade the electrical field using WACKER’s specialty silicone rubber; which individual grades are available.

Page 30

3.3 Cable Accessories: Silicone Products with Specifications
All the important silicone grades for the production of cable accessories; their main properties and technical specifications.

Page 32
3.1 CABLE ACCESSORIES

Cable accessories are used outdoors and in the ground. This requires outstanding insulating properties. In addition, slip-on and cold-shrink accessories must be highly elastic if connections are to be permanently secure. WACKER silicone rubbers have been meeting these requirements perfectly for many years.

Application Fields for Cable Accessories
Cable joints, terminations and connectors made of WACKER silicone elastomers are used worldwide for voltages ranging from 10 kV to above 500 kV. Low-voltage joints can be economically filled with silicone gel, which does not require classification as a hazardous substance.

Advantages of WACKER Silicone Elastomers for Cable Accessories

- **Long service life**
 WACKER silicone rubbers have excellent hydrophobic properties and outstanding resistance to temperature, UV radiation and ozone. Thanks to their excellent long-term electrical behavior, they are perfect insulating materials for cable accessories. There is hardly any aging due to the effects of an electric field alone.

- **High operational reliability**
 WACKER silicone rubbers show very good tracking and arc resistance. They also have a high flashover resistance, even if the surface is very dirty.

- **Permanent elasticity**
 Cable accessories made of silicone elastomers are highly and permanently elastic over a wide temperature range.
Thanks to the favorable stress/elongation ratio and the outstanding resilience, the insulating element fits perfectly on the cable wires without any gaps. The electrical insulation is permanently maintained.

Manufacture of Cable Accessories

WACKER silicone rubbers are suitable for both slip-on and cold-shrink technology. The choice of product—solid silicone rubbers (HCR), liquid silicone rubbers (LSR), extra-liquid systems (POWERSIL® XLR®), or room-temperature-vulcanizing systems (RTV-2)—depends on the manufacturing process.

Manufacturing of cable accessories from silicone rubber can be performed by:
- Injection molding (HCR, LSR)
- Low pressure mold filling (XLR®, RTV-2)
- Extrusion (HCR)
3.2 FIELD GRADING WITH CABLE ACCESSORIES

Using special silicone elastomers from WACKER, the electrical field strength within the cable joints, terminations and connectors can be efficiently graded to reduce localized high field strengths.

Field Grading with WACKER Silicone Rubbers

For field grading applications, WACKER offers a wide range of high permittivity grades and grades that have been modified to be electrically conductive. The electric field can be graded geometrically or refractively:

- Geometric field grading is carried out with specially shaped conductive electrodes (deflectors) that usually have a volume resistivity of less than 100 Ωcm. The outer conducting layer of the cable is continued inside the accessory.
- Refractive field grading is based on the deflection of field lines at the interface between materials with a different permittivity. Silicone elastomers with a high relative permittivity are used in such cases. Particularly suitable grades have a high permittivity ranging from 10 to 30, depending on the grade.

Electrically Conductive Silicone Dispersions

An electrically conductive coating on cable joints and connectors ensures high operational reliability and a long service life for the products. For coating applications, WACKER has a series of electrically conductive silicone dispersions, including POWERSIL® 402, which can also be used as an adhesion-promoting primer, e.g. for deflectors.

Equipotential Lines Capacitive and Refractive Field Control

<table>
<thead>
<tr>
<th>Without field control</th>
<th>Capacitive field control</th>
<th>Refractive field control</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conductor</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Inner cond. layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable insulation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Outer cond. layer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shielding</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cable jacket</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Conductive silicone rubber**
- **Insulating silicone rubber**
- **Refractive silicone rubber**
Perfect field grading is required in order to reduce the electric field strength at the end of the outer conductive layer of the cable. Special silicone rubbers have properties that can be used to grade electric fields.
3.3 CABLE ACCESSORIES: SILICONE PRODUCTS AND PROPERTIES (HCR)

<table>
<thead>
<tr>
<th>Silicone</th>
<th>Processing</th>
<th>Material</th>
<th>Hardness Shore A</th>
<th>Elongation at Break [%]</th>
<th>Tear Strength [N/mm²]</th>
<th>Density [g/cm³]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulating HCR</td>
<td>Injection molding</td>
<td>POWERSIL® 351</td>
<td>38</td>
<td>800</td>
<td>30</td>
<td>1.10</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 352</td>
<td>45</td>
<td>700</td>
<td>25</td>
<td>1.13</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 3525</td>
<td>23</td>
<td>1,200</td>
<td>45</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 3500</td>
<td>45</td>
<td>850</td>
<td>40</td>
<td>1.09</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 3540</td>
<td>38</td>
<td>900</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® R 401</td>
<td>10 – 90</td>
<td>300 – 1,200</td>
<td>17 – 26</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® R 420</td>
<td>30 – 70</td>
<td>550 – 1,000</td>
<td>25 – 40</td>
<td></td>
</tr>
<tr>
<td>Electrically Conductive HCR</td>
<td>Injection molding</td>
<td>ELASTOSIL® R 570/50</td>
<td>50</td>
<td>310</td>
<td>10</td>
<td>1.12 – 1.19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® R 570/70</td>
<td>71</td>
<td>180</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 440</td>
<td>43</td>
<td>500</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>HCR with a High Dielectric Constant</td>
<td>Injection molding</td>
<td>POWERSIL® 415</td>
<td>41</td>
<td>450</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Insulating HCR</td>
<td>Extrusion</td>
<td>ELASTOSIL® R plus 4305/40</td>
<td>40</td>
<td>900</td>
<td>35</td>
<td></td>
</tr>
<tr>
<td>Electrically Conductive HCR</td>
<td>Extrusion</td>
<td>ELASTOSIL® R plus 573/50</td>
<td>50</td>
<td>350</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>HCR with a High Dielectric Constant</td>
<td>Extrusion</td>
<td>POWERSIL® 412</td>
<td>54</td>
<td>300</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>Tracking Resistance</td>
<td>Volume Resistivity [Qcm]</td>
<td>Density [g/cm³]</td>
<td>ISO 1183-1A</td>
<td>Main Properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------------------------</td>
<td>-----------------</td>
<td>-------------</td>
<td>-----------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IEC 60587</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 3.5</td>
<td>$>10^{15}$</td>
<td>1.10</td>
<td>1 A 3.5</td>
<td>High tracking resistance, excellent mechanical properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 3.5</td>
<td>$>10^{15}$</td>
<td>1.13</td>
<td>1 A 3.5</td>
<td>High tracking resistance, low tension set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 3.5</td>
<td>$>10^{15}$</td>
<td>1.09</td>
<td>1 A 3.5</td>
<td>High tracking resistance, excellent mechanical properties, fast-curing 1-component system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 3.5</td>
<td>$>10^{15}$</td>
<td>1.11</td>
<td>1 A 3.5</td>
<td>High tracking resistance, excellent mechanical properties, fast-curing 1-component system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 3.5</td>
<td>$>10^{15}$</td>
<td>1.11</td>
<td>1 A 3.5</td>
<td>High tracking resistance, excellent mechanical properties, fast-curing 1-component system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>$>10^{15}$</td>
<td>1.12–1.19</td>
<td>1 A 2.5</td>
<td>Standard grade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>$>10^{15}$</td>
<td>1.09–1.19</td>
<td>1 A 2.5</td>
<td>Standard grade with excellent mechanical properties</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>5</td>
<td>1.11</td>
<td>–</td>
<td>Standard grade with excellent electrical conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>4</td>
<td>1.19</td>
<td>–</td>
<td>Standard grade with excellent electrical conductivity</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>50</td>
<td>1.11</td>
<td>–</td>
<td>Good mechanical properties, low tension set</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>10^{12} $\varepsilon_r = 15$</td>
<td>1.32</td>
<td>–</td>
<td>High permittivity; $\varepsilon_r = 15$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>$>10^{15}$</td>
<td>1.09</td>
<td>1 A 2.5</td>
<td>Outstanding mechanical properties, fast-curing, 2-component system</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>5</td>
<td>1.13</td>
<td>–</td>
<td>Very good electrical conductivity, fast-curing system for extrusion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>10^{12} $\varepsilon_r = 28$</td>
<td>1.34</td>
<td>–</td>
<td>High permittivity; $\varepsilon_r = 28$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.3 CABLE ACCESSORIES:

SILICONE PRODUCTS AND PROPERTIES (LSR AND AUXILIARIES)

<table>
<thead>
<tr>
<th>Silicone</th>
<th>Processing</th>
<th>Material</th>
<th>Hardness Shore A ISO 868</th>
<th>Elongation at Break [%] ISO 37</th>
<th>Tear Strength [N/mm] ASTM D 624B</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulating LSR</td>
<td>Injection molding</td>
<td>POWERSIL® 730</td>
<td>35</td>
<td>600</td>
<td>26</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 732 CS</td>
<td>33</td>
<td>720</td>
<td>37</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 735</td>
<td>39</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 740</td>
<td>40</td>
<td>670</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® LR 3003</td>
<td>5 – 80</td>
<td>300 – 700</td>
<td>7 – 35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® LR 3003/30 CS</td>
<td>30</td>
<td>700</td>
<td>33</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® LR 3043</td>
<td>30 – 70</td>
<td>450 – 690</td>
<td>30 – 45</td>
</tr>
<tr>
<td>Electrically Conductive LSR</td>
<td>Injection molding</td>
<td>POWERSIL® 464</td>
<td>50</td>
<td>350</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 466</td>
<td>38</td>
<td>650</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 466 LV</td>
<td>32</td>
<td>690</td>
<td>22</td>
</tr>
<tr>
<td>Insulating LSR</td>
<td>Low-pressure mold filling</td>
<td>POWERSIL® 735</td>
<td>39</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® XLR® 620</td>
<td>33</td>
<td>400</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ELASTOSIL® LR 3002/35</td>
<td>33</td>
<td>450</td>
<td>25</td>
</tr>
<tr>
<td>Electrically Conductive LSR</td>
<td>Low-pressure mold filling</td>
<td>POWERSIL® 464</td>
<td>50</td>
<td>350</td>
<td>25</td>
</tr>
<tr>
<td>Insulating RTV-2</td>
<td>Casting</td>
<td>POWERSIL® 600</td>
<td>30</td>
<td>500</td>
<td>20</td>
</tr>
<tr>
<td>Electrically Conductive Silicone Dispersion</td>
<td>Spraying</td>
<td>POWERSIL® 402</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 403</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 420</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® 79032</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Silicone Lubricants</td>
<td></td>
<td>POWERSIL® PASTE AP</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PASTE P</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PASTE P 250</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>PASTE P 300</td>
<td>–</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Silicone Gel</td>
<td>Casting</td>
<td>POWERSIL® Gel</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® Gel FC</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td></td>
<td></td>
<td>POWERSIL® Gel C 670</td>
<td>Gel</td>
<td>–</td>
<td>–</td>
</tr>
<tr>
<td>Tracking Resistance</td>
<td>Viscosity [mPa·s]</td>
<td>Shear Rate 10 s⁻¹</td>
<td>Volume Resistivity [Ωcm]</td>
<td>Density [g/cm³]</td>
<td>Main Properties</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------------</td>
<td>-------------------</td>
<td>--------------------------</td>
<td>----------------</td>
<td>----------------</td>
</tr>
<tr>
<td>IEC 60957</td>
<td>ISO 3219</td>
<td>ISO 868</td>
<td>ISO 37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 A 4.5</td>
<td>150,000</td>
<td>>10¹⁵</td>
<td>1.09</td>
<td>High tracking resistance, very good mechanical properties</td>
<td></td>
</tr>
<tr>
<td>1 A 4.5</td>
<td>375,000</td>
<td>>10¹⁵</td>
<td>1.11</td>
<td>High tracking resistance, excellent mechanical properties, optimized for cold-shrink accessories</td>
<td></td>
</tr>
<tr>
<td>1 A 4.5</td>
<td>150,000</td>
<td>>10¹⁵</td>
<td>1.08</td>
<td>High tracking resistance, very good mechanical properties</td>
<td></td>
</tr>
<tr>
<td>1 A 4.5</td>
<td>425,000</td>
<td>>10¹⁵</td>
<td>1.14</td>
<td>High tracking resistance, excellent mechanical properties</td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>25,000 – 540,000</td>
<td>>10¹⁵</td>
<td>1.05 – 1.19</td>
<td>Standard grade with very good mechanical properties</td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>300,000</td>
<td>>10¹⁵</td>
<td>1.11</td>
<td>Highly elastic grade for cold-shrink technology</td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>320,000 – 630,000</td>
<td>>10¹⁵</td>
<td>1.10 – 1.14</td>
<td>Standard grade with excellent mechanical properties</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>425,000</td>
<td>75</td>
<td>1.10</td>
<td>RTV-2 adheres well to overmolded POWERSIL® 464</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>600,000</td>
<td>30</td>
<td>1.08</td>
<td>Excellent mechanical properties</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>400,000</td>
<td>40</td>
<td>1.08</td>
<td>Excellent mechanical properties, low viscosity</td>
<td></td>
</tr>
<tr>
<td>1 A 4.5</td>
<td>150,000</td>
<td>>10¹⁵</td>
<td>1.08</td>
<td>High tracking resistance, very good mechanical properties</td>
<td></td>
</tr>
<tr>
<td>1 A 4.5</td>
<td>15,000</td>
<td>>10¹⁵</td>
<td>1.10</td>
<td>High tracking resistance, very low viscosity</td>
<td></td>
</tr>
<tr>
<td>1 A 2.5</td>
<td>70,000</td>
<td>>10¹⁵</td>
<td>1.09</td>
<td>Very good mechanical properties</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>425,000</td>
<td>75</td>
<td>1.10</td>
<td>RTV-2 adheres well to overmolded POWERSIL® 464</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>10,000</td>
<td><10¹⁵</td>
<td>1.10</td>
<td>High tracking resistance, very low viscosity</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>5</td>
<td>1.22</td>
<td>Volume resistivity 5 Ωcm</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>25</td>
<td>1.1</td>
<td>Cold shrink applications</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>0.5</td>
<td>1.24</td>
<td>Volume resistivity 0.5 Ωcm</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>–</td>
<td>5</td>
<td>1.22</td>
<td>Volume resistivity 5 Ωcm, 1-component material</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>250,000</td>
<td>–</td>
<td>1.02</td>
<td>Very good lubricating properties, no swelling of silicone elastomers in contact with the paste</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>170,000</td>
<td>–</td>
<td>1.0</td>
<td>General purpose grade BfR, FDA approval</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>210,000</td>
<td>–</td>
<td>0.98</td>
<td>Good insulating electrical properties, good adhesion to metals and ceramic materials, excellent water repellency</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>50,000</td>
<td>–</td>
<td>0.94</td>
<td>Good insulating electrical properties, good adhesion to metals and ceramic materials, excellent water repellency</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>1,000</td>
<td>>10¹⁵</td>
<td>0.97</td>
<td>Very low viscosity, excellent adhesion</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>1,000</td>
<td>>10¹⁵</td>
<td>0.97</td>
<td>Very low viscosity, excellent adhesion, fast curing</td>
<td></td>
</tr>
<tr>
<td>–</td>
<td>4,000</td>
<td>>10¹⁵</td>
<td>0.70</td>
<td>Compressible</td>
<td></td>
</tr>
</tbody>
</table>
CHAPTER 4:
INSULATING MATERIALS

Contents

4.1 Silicone Fluid Page 38
 Why silicone fluids are preferred for heat dissipation in modern transformers; their relevant properties.

4.2 Silicone Gels Page 39
 The characteristics and benefits of silicone gel as a potting compound.
4.1 SILICONE FLUID

Modern transformers generate a lot of heat during operation. Silicone fluids have proven to be excellent coolants and dielectrics. High-voltage cable terminations are a further important application field for silicone fluids.

Composition and Properties
Silicone fluids used for electrical insulation are typically polydimethylsiloxanes. They are transparent, colorless and odorless liquids. Their molar mass ranges from 1,000 to 150,000 g/mol. They have viscosities ranging from 0.65 to one million mm²/s, and continuous operating temperatures ranging from the pour point (-60 °C to -40 °C, depending on the viscosity) to about 180 °C.

Temperature changes have little effect on the key properties of silicone fluids, for example the dielectric loss factor and the viscosity. This distinguishes them from other electrical insulating fluids such as mineral oils and ester fluids. Special grades have an extended application range that includes lower and higher temperatures (-100 °C to +250 °C).

The Classic Solution for Transformers
Marketed under the name POWERSIL® Fluid, WACKER offers silicone fluids that have been specially optimized for insulation systems in modern high-performance transformers. Although they were originally developed to replace PCB, POWERSIL® Fluid TR 50 and POWERSIL® Fluid TR 20 are now used mainly on account of their excellent resistance to oxidation and their high flash point. A special feature of the silicone fluids is that they exhibit only a moderate increase in viscosity at low temperatures.

Advantages of Silicone Fluid
- High temperature resistance
- Extremely low dielectric loss factor
- Only minor changes in the electrical properties over a wide temperature range
- High flash point

Product Properties of POWERSIL® Fluid TR 50

<table>
<thead>
<tr>
<th>Typical General Characteristics</th>
<th>Inspection Method</th>
<th>Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Density at 20 °C</td>
<td>ISO 3675</td>
<td>0.96 g/cm³</td>
</tr>
<tr>
<td>Viscosity, kinematic at 40 °C</td>
<td>ISO 3104</td>
<td>40 mm²/s</td>
</tr>
<tr>
<td>Flash point</td>
<td>ISO 2719</td>
<td>> 240 °C</td>
</tr>
<tr>
<td>Fire point</td>
<td>ISO 2592</td>
<td>> 340 °C</td>
</tr>
<tr>
<td>Pour point</td>
<td>ISO 3016</td>
<td>< -50 °C</td>
</tr>
<tr>
<td>Neutralizing value</td>
<td>IEC 60836</td>
<td>< 0.01 mg KOH/g</td>
</tr>
<tr>
<td>Breakdown voltage</td>
<td>IEC 60156</td>
<td>> 40 kV</td>
</tr>
<tr>
<td>Dissipation factor tan δ at 90 °C and 50 Hz</td>
<td>IEC 60247</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Permittivity at 90 °C and 50 Hz</td>
<td>IEC 60247</td>
<td>2.55 (+/- 0.05)</td>
</tr>
<tr>
<td>Volume resistivity 90 °C</td>
<td>IEC 60247</td>
<td>> 10¹³ Ω cm (>100 GΩm)</td>
</tr>
</tbody>
</table>
4.2 SILICONE GELS

Silicone gels are used as insulating potting compounds, e.g. for cable accessories.

Properties
Silicone gels are pourable, addition-curing, two-component silicones. Silicone gels do not cure to a silicone elastomer in the conventional sense, but to soft, gel-like products. The components of POWERSIL® Gels have a very low viscosity with excellent pouring properties. The cured silicone pretty much adheres to all substrates in contact with the gel. It also has excellent dielectric properties. Special fillers allow the modification of gels. WACKER offers a compressible gel that can be used to fill gaps in electrical equipment.

Advantages of Silicone Gels
- High dielectric strength
- Low modulus
- Low viscosity

Product Properties of POWERSIL® Gels

<table>
<thead>
<tr>
<th>Processing</th>
<th>Material</th>
<th>Viscosity [mPa·s]</th>
<th>Volume Resistivity [Ωcm]</th>
<th>Density [g/cm³]</th>
<th>Main Properties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casting</td>
<td>POWERSIL® Gel</td>
<td>1,000</td>
<td>>10^{15}</td>
<td>0.97</td>
<td>Very low viscosity, excellent adhesion</td>
</tr>
<tr>
<td>Casting</td>
<td>POWERSIL® Gel FC</td>
<td>1,000</td>
<td>>10^{15}</td>
<td>0.97</td>
<td>Very low viscosity, excellent adhesion, fast curing</td>
</tr>
<tr>
<td>Casting</td>
<td>POWERSIL® Gel C 670</td>
<td>4,000</td>
<td>>10^{15}</td>
<td>0.70</td>
<td>Compressible</td>
</tr>
</tbody>
</table>
5.1 Adhesion Promoters

Why silicone-based adhesion promoters are the material of choice for secure chemical bonding of silicone rubber.

POWERSIL® Insulator Finish

Characteristics of WACKER finishing rubber.

Adhesives

Advantages of two-component silicone adhesives.

Mold Release Agents

Why industry prefers to use silicones as mold release agents; their typical properties.

Insulator Cleaner

A professional silicone solution from WACKER.

5.2 Sliding and Filling Pastes

Properties of slip-on aids (such as silicone pastes) necessary for effective insulation.
5.1 ADHESION PROMOTERS / INSULATOR FINISH / ADHESIVES / MOLD RELEASE AGENTS

Adhesion Promoters
Insulating elements are made of different materials. Adhesion promoters are used to ensure a tightly sealed interface.

Grades
- **WACKER® Primer G 790** and **WACKER® Primer G 790 Toluene Free** are recommended to promote adhesion between liquid rubbers (LSR, XLR® grades) or RTV-2 silicone rubbers and other materials, such as glass-fiber-reinforced plastics and metal fittings.
- **WACKER® Primer G 791** promotes adhesion between vulcanized silicone rubber and another layer of RTV-2 or liquid silicone rubber (LSR, XLR® grades).
- **WACKER® Primer G 3243** is used to promote adhesion between peroxide-cured solid rubbers and other materials, such as glass-fiber-reinforced plastics (GRP) or metal fittings.
- **WACKER® Primer G 800** promotes adhesion between addition-curing solid rubbers and other materials.
- Electrically conductive POWERSIL® 402 primer may be used to promote adhesion of insulating RTV-2 and liquid rubbers to silicone rubbers that have been modified to be electrically conductive.

Advantages
- Tested auxiliary products from a single source, in conjunction with the silicone rubbers, ensure reliable and safe use for the customer.
- WACKER has its own range of adhesion promoters for all applications.

Insulator Finish
Insulator finish is used to repair small damaged areas and for subsequent filling of cavities. A self-curing silicone rubber is used for this.

Grades
- **POWERSIL® INSULATOR FINISH**

Advantages
- The product has a high tracking resistance.
- WACKER manufactures and supplies finishing rubber.
- Same color as POWERSIL® 310, POWERSIL® 3100, POWERSIL® XLR® 630 etc.

Adhesives
Cured silicone rubber parts can be joined by RTV-1 silicone rubber.

Grades
- **ELASTOSIL® R 3113 A/B**
- **ELASTOSIL® E 4**
- **ELASTOSIL® E 43**

Mold Release Agents
Mold release agents ensure an efficient production of molded parts. This is particularly important when using certain solid rubbers. External release agents also facilitate demolding when a new mold is being run in.

Chemical Structure and Properties
The surfactant structure of mold release agents for silicone rubber grades gives them their excellent release effect. A 1% aqueous solution is sprayed into the hot mold.

Grades
- **ELASTOSIL® AUX MOLD RELEASE AGENT 32**

Insulator Cleaner
Composite, ceramic and glass insulators can all benefit of the professional care provided by a tailor-made silicone solution.

Grades
- **POWERSIL® SHINE**
5.2 SLIDING AND FILLING SILICONE PASTES

Sliding and Filling Silicone Pastes

WACKER silicone pastes are designed as slip-on aids and lubricants for application in the field of medium- and high-voltage cable accessories. In addition to their excellent lubricating properties, WACKER silicone pastes exhibit good electrical properties and an excellent release effect with respect to elastomers and plastics. Furthermore, WACKER is the first manufacturer to present a completely boron-free paste portfolio.

Chemical Structure and Properties

Silicone pastes are composed of thermostable siloxanes and inorganic fillers. The exceptional properties of WACKER silicone pastes give them a very wide performance spectrum. Silicone pastes provide excellent electrical insulation, i.e. high dielectric strength and a low dielectric loss factor.

Because of their excellent oxidation resistance, silicone pastes have long-term resistance to weathering. They can be used as lubricants, installation aids, sealants, release agents, heat sink pastes, moisture protection and much more. Due to their high water repellency, silicone pastes are used to embed electrical equipment and protect it from moisture and corrosion.

In the field of transmission and distribution, the main application of WACKER silicone pastes is for the installation of cable accessories such as cable joints and terminations.

Grades

- POWERSIL® PASTE AP is an opaque to whitish paste of medium consistency that combines the outstanding dielectric properties of a silicone paste with good lubricating and release properties. Due to its special formulation with phenyl-modified silicone oil, this paste causes no substantial swelling of silicone elastomers that come into contact with it. POWERSIL® PASTE AP is seen as the standard product for the assembly of cable accessories and other parts in the transmission and distribution industries.

- WACKER® SILICONE PASTE P is a translucent, vaseline-like, relatively stiff, water-repellent paste. WACKER® SILICONE PASTE P becomes softer when subjected to shear stress or other mechanical stress such as kneading, which in many instances makes processing easier. The pasty consistency is little affected by changes in temperature. The components of Paste P are on the positive lists of the following regulations for food contact: Regulation (EU) No. 10/2011, Recommendation XV. Silicones of the BfR (Federal Institute for Risk Assessment) and the FDA Code of Federal Regulations Title 21 §175.3570 Lubricants with Incidental Food Contact.

- WACKER® SILICONE PASTE P 250 is opaque, of medium consistency and slightly thixotropic. It displays good electrical insulation, as well as good adhesion to metals and ceramic materials. Parts coated with WACKER® SILICONE PASTE P 250 exhibit excellent water repellency, resulting in a certain degree of protection against corrosion. The properties of the paste facilitate its use as an embedding compound, release agent for compression molding and extruder die rings, lubricant for shut-off valves and control devices as well as cable terminations and joints.

- WACKER® SILICONE PASTE P 300 is opaque, of medium to soft consistency and slightly pseudoplastic. In general, it shows very similar properties to WACKER® SILICONE PASTE P 250 but is softer in consistency with an unworked penetration of 290 – 300 1/10 mm.

Product Properties of POWERSIL® and WACKER® Silicone Pastes

<table>
<thead>
<tr>
<th>Density (25 °C)</th>
<th>Unworked Penetration ISO 2137</th>
<th>Operating Temperature Range</th>
<th>Dielectric Strength DIN 53481</th>
<th>Dielectric Constant Er</th>
<th>Dissipation Factor IEC 60250</th>
</tr>
</thead>
<tbody>
<tr>
<td>POWERSIL® PASTE AP</td>
<td>1.1 g/cm³</td>
<td>250 – 280 1/10 mm</td>
<td>-40 – +200 °C</td>
<td>20 kV/mm</td>
<td>3.7 Er</td>
</tr>
<tr>
<td>PASTE P</td>
<td>1.00 g/cm³</td>
<td>180 – 220 1/10 mm</td>
<td>-40 – +200 °C</td>
<td>20 kV/mm</td>
<td>2.8 Er</td>
</tr>
<tr>
<td>PASTE P 250</td>
<td>0.98 g/cm³</td>
<td>220 – 270 1/10 mm</td>
<td>-40 – +200 °C</td>
<td>19 kV/mm</td>
<td>3.8 Er</td>
</tr>
<tr>
<td>PASTE P 300</td>
<td>1.00 g/cm³</td>
<td>290 – 330 1/10 mm</td>
<td>-40 – +150 °C</td>
<td>20 kV/mm</td>
<td>3.1 Er</td>
</tr>
</tbody>
</table>

43
CHAPTER 6:
PROCESSING TECHNOLOGIES

Contents

6.1 Injection Molding Page 46
 Why injection molding is the main method of mass production and why it is so popular.

6.2 Low-Pressure Mold Filling Page 48
 Why low-pressure mold filling is often used to make large-volume moldings; which factors must be considered.

6.3 Extrusion Page 49
 Products that particularly benefit from extrusion; typical process properties.

6.4 Crosslinking of Extrudates Page 50
 Crosslinkers for pressureless and pressurized vulcanization.
6.1 INJECTION MOLDING

Injection molding is currently the most popular and efficient method of processing large quantities of silicones and obtaining consistently high product quality.

When modern silicone elastomers are injection-molded, very fast cycle times and, thus, high production output can be achieved. Suitably configured machinery and tools permit flexible production and extremely low material losses. This process is used for both solid rubbers (HCR) and liquid rubbers (LSR).

The modern processing technology for solid silicone rubbers is injection molding. With the available equipment, it is possible to manufacture insulating components up to about 140 cm in length in one step. For longer components, e.g. high-voltage insulators, multiple processes in which different sections are produced sequentially or in parallel are used.
Injection molding is used to process liquid silicone rubber grades. This method is used to manufacture comparatively thin-walled components. Liquid rubber injection molding is ideal for terminations, cable joints, connectors and other mass-produced components. Often, several layers are produced in sequence.

Liquid rubber is always processed and fed by means of mixing and metering equipment.

Grades
The latest solid and liquid silicone rubbers (HCR and LSR, respectively) from WACKER are ideal for injection molding.

Characteristics of the Injection Molding Process
- Suitable for large numbers of small to medium-sized parts
- High dimensional accuracy
- High productivity
- High curing temperatures of 120 °C to 180 °C
- High mold clamping force required

WACKER Technical Center
Our Technical Center (Technikum) offers modern production facilities suitable for both extrusion and injection molding, where customers can test prototypes and new products. Plus, we will advise you at your premises.
6.2 LOW-PRESSURE MOLD FILLING

Low-pressure mold filling (or casting) is especially suitable for large-volume silicone moldings, such as high-voltage cable joints or hollow-core insulators. A low-viscosity silicone rubber with good flow properties is generally used in such cases. This guarantees a high volumetric flow rate and reliable, bubble-free production.

RTV-2 silicone rubbers, low-viscosity liquid rubbers and so-called extra liquid rubbers (POWERSIL® XLR®) can be processed using simple casting techniques together with mixing and metering equipment.

Grades
Room-temperature vulcanizing, two-component silicone rubbers (RTV-2) and certain low-viscosity liquid silicone rubbers (LSR and POWERSIL® XLR®) were specially developed by WACKER for this technology.

Characteristics of the Low-Pressure Mold Filling Process
- Cost-efficient process for prototypes, large-volume parts, and small series
- Low curing temperatures from room temperature to 120 °C
- Requires a relatively low mold clamping force
- Medium capital outlay
6.3 EXTRUSION

Extrusion is the most efficient method of producing profiles that are subsequently cured without pressure. This process is the most typical for the production of cables, but is also suitable for slip-on or cold-shrink cable joints, for encapsulating GRP rods and tubes, and for hollow-core insulators produced by spiral extrusion.

Solid silicone rubbers can also be processed by extrusion. Special peroxide or addition-curing grades must be used to permit subsequent pressureless curing.

Grades

WACKER has developed special high-temperature-vulcanizing (HCR) silicone rubbers for extrusion. There is a choice of insulating, electrically conductive, or HCR grades with a high dielectric constant, depending on the application.

Characteristics of the Extrusion Process

- This process is suitable for simple geometries and for co-extrusion.
- Suitable peroxides are Crosslinkers E and C6. However, modern extrusion silicones are cured with a platinum catalyst.

Extrusion (shown here schematically) is used to manufacture state-of-the-art insulating components in modified molds. For example, repeated extrusion is suitable for the production of tubular components used in cable accessories.

Process Consultation with WACKER Process Engineers

The correct choice of silicone rubber depends on many factors, including the manufacturing process, volume, mold and quantities. Our specialists will gladly help you find the most cost-effective solution. Your WACKER consultant will be happy to advise you.
Extrudates are usually crosslinked via vertical or horizontal heating zones, with or without pressure. Silicone rubber can also be crosslinked in a salt bath, though this option is rarely used.

Crosslinking in Heating Zones without Pressure
Tubing, cables and profiles are usually crosslinked in a heating zone (at 200 – 500 °C) without the application of external pressure. Horizontal or vertical heating tunnels are heated by means of resistance heaters, infrared heating bars with reflectors, hot-air systems or ceramic dark radiators. The extrudates are conveyed on sheet-steel or mesh conveyor belts. The conveyor belts run on movable deflector rolls to compensate for the thermal expansion of the belt. Their velocity can be regulated. The conveyor belt return should be located in the heating tunnel to prevent excessive cooling. If this is not possible, use covers to prevent rapid heat loss. To avoid pressure marks resulting from the conveyor belt, a shock tunnel can be fitted upstream in horizontal heating zones to pre-vulcanize the parts at about 600 °C. In many instances, it is preferable to extrude vertically using an extruder head deflected through 90°. This prevents belt pressure marks, so that even very soft materials can be easily processed.
INNOVATIONS:
MAKING GOOD INSULATING MATERIALS EVEN BETTER

WACKER silicone specialists continuously research new methods and possible applications, to meet the continuing inexorable growth in global power consumption. This requires silicone insulating materials that can be manufactured even more efficiently and are also durable and environmentally friendly.

New Methods of Field Grading
WACKER is developing innovative materials that can be used for new field-grading techniques. Possible applications include cable accessories and insulators.

Future-Oriented Curing Technologies
The numbers of silicone composite insulators and silicone cable accessories have been rapidly increasing. Commonly used methods of curing silicone rubbers for electrical engineering components are approaching their limits. There is already a demand for even higher processing speeds. WACKER is always looking for new solutions. One future-oriented curing technology for the transmission and distribution industry is UV curing of a new, highly tracking-resistant silicone elastomer.

Researching New Applications
Future applications are understood to be long-distance DC lines for the transmission of electrical power. WACKER’s contribution is to optimize insulation materials to achieve an even better performance under DC voltage compared to already existing systems.

Acknowledgement:
We are extremely grateful to our customers for having kindly provided the images in this brochure:
Beijing Jiumen Power Co., Ltd.
Brög Kabel AG
Cellpack GmbH
Elektrokrämik Sonneberg GmbH (SEVES)
Lapp Insulators GmbH
PFISTERER SEFAG AG
Reinhauen Power Composites GmbH
Südkabel GmbH
Trench Germany GmbH
Tridelta Überspannungsableiter GmbH
WACKER is one of the world’s leading and most research-intensive chemical companies, with total sales of €5.3 billion. Products range from silicones, binders and polymer additives for diverse industrial sectors to bioengineered pharmaceutical actives and hyperpure silicon for semiconductor and solar applications. As a technology leader focusing on sustainability, WACKER promotes products and ideas that offer a high value-added potential to ensure that current and future generations enjoy a better quality of life based on energy efficiency and protection of the climate and environment.

Spanning the globe with 5 business divisions, we offer our customers highly-specialized products and comprehensive service via 25 production sites, 22 technical competence centers, 12 WACKER ACADEMY training centers and 50 sales offices in Europe, North and South America, and Asia – including a presence in China. With a workforce of some 17,000, we see ourselves as a reliable innovation partner that develops trailblazing solutions for,

- Sales offices and production sites, plus 22 technical centers, ensure you a local presence worldwide.
and in collaboration with, our customers. We also help them boost their own success. Our technical centers employ local specialists who assist customers worldwide in the development of products tailored to regional demands, supporting them during every stage of their complex production processes, if required. WACKER e-solutions are online services provided via our customer portal and as integrated process solutions. Our customers and business partners thus benefit from comprehensive information and reliable service to enable projects and orders to be handled fast, reliably and highly efficiently.

Visit us anywhere, anytime around the world at: www.wacker.com

All figures are based on fiscal 2015.
The data presented in this medium are in accordance with the present state of our knowledge but do not absolve the user from carefully checking all supplies immediately on receipt. We reserve the right to alter product constants within the scope of technical progress or new developments. The recommendations made in this medium should be checked by preliminary trials because of conditions during processing over which we have no control, especially where other companies’ raw materials are also being used. The information provided by us does not absolve the user from the obligation of investigating the possibility of infringement of third parties’ rights and, if necessary, clarifying the position. Recommendations for use do not constitute a warranty, either express or implied, of the fitness or suitability of the product for a particular purpose.